
Steel Bridge Design Handbook

November 2012

U.S. Department of Transportation

Federal Highway Administration

Design Example 2A:  
Two-Span Continuous Straight 
Composite Steel I-Girder Bridge
Publication No. FHWA-IF-12-052 - Vol. 21



 

Notice 

 
This document is disseminated under the sponsorship of the U.S. Department of Transportation in 
the interest of information exchange.  The U.S. Government assumes no liability for use of the 
information contained in this document.  This report does not constitute a standard, specification, 
or regulation. 
 
 

Quality Assurance Statement 

 

The Federal Highway Administration provides high-quality information to serve Government, 
industry, and the public in a manner that promotes public understanding.  Standards and policies 
are used to ensure and maximize the quality, objectivity, utility, and integrity of its information.  
FHWA periodically reviews quality issues and adjusts its programs and processes to ensure 
continuous quality improvement. 
 



Steel Bridge Design Handbook 

Design Example 2A: Two-Span 

Continuous Straight Composite Steel  

I-Girder Bridge 

 
Publication No. FHWA-IF-12-052 - Vol. 21 

 
November 2012 

 





Technical Report Documentation Page 

1.  Report No. 
FHWA-IF-12-052 - Vol. 21 

2.  Government Accession No. 

 
3.  Recipient’s Catalog No. 
 

4.  Title and Subtitle 

Steel Bridge Design Handbook Design Example 2A: Two-Span 
Continuous Straight Composite Steel I-Girder Bridge 

5.  Report Date 

November 2012 
6.  Performing Organization Code 
 

7.  Author(s) 
Karl Barth, Ph.D. (West Virginia University) 

8.  Performing Organization Report No.  

 

9.  Performing Organization Name and Address 

HDR Engineering, Inc. 
11 Stanwix Street 
Suite 800 
Pittsburgh, PA 15222 

10. Work Unit No. 

 
11. Contract or Grant No. 

 

12.  Sponsoring Agency Name and Address 

Office of Bridge Technology  
Federal Highway Administration 
1200 New Jersey Avenue, SE 
Washington, D.C. 20590 
 

13.  Type of Report and Period Covered 

Technical Report 
March 2011 – November 2012 
 
14.  Sponsoring Agency Code 

 
15.  Supplementary Notes 

This design example was edited in 2012 by HDR Engineering, Inc., to be current with the AASHTO LRFD Bridge Design 
Specifications, 5th Edition with 2010 Interims.   
 
16.  Abstract 

 
The purpose of this example is to illustrate the use of the AASHTO LRFD Bridge Design for the design of a continuous two span 
steel I-girder bridge. The design process and corresponding calculations for steel I-girders are the focus of this example, with 
particular emphasis placed on illustration of the optional moment redistribution procedures. All aspects of the girder design are 
presented, including evaluation of the following: cross-section proportion limits, constructibility, serviceability, fatigue, and 
strength requirements. Additionally, the weld design for the web-to-flange joint of the plate girders is demonstrated along with 
all applicable components of the stiffener design and cross frame member design. 

17.  Key Words 

Steel Bridge, Steel I-Girder, AASHTO LRFD, Moment 
Redistribution, Cross Frame Design 

18.  Distribution Statement 

No restrictions.  This document is available to the public through 
the National Technical Information Service, Springfield, VA  
22161. 

19.  Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No of Pages 
 

22.  Price 

 

  Form DOT F 1700.7  (8-72)                                                                                                                        Reproduction of completed pages authorized 





i 

Steel Bridge Design Handbook Design Example 2A: 

Two-Span Continuous Straight Composite Steel  

I-Girder Bridge 
 
 
 
 

Table of Contents 
 
FOREWORD .................................................................................................................................. 1 

1.0 INTRODUCTION ................................................................................................................. 3 

2.0 DESIGN PARAMETERS ..................................................................................................... 4 

3.0 GIRDER GEOMETRY ......................................................................................................... 6 

3.1 Web Depth ....................................................................................................................... 6 

3.2 Web Thickness ................................................................................................................. 6 

3.3 Flange Geometries ........................................................................................................... 7 

4.0 LOADS ................................................................................................................................ 10 

4.1 Dead Loads .................................................................................................................... 10 

4.1.1 Component And Attachment Dead Load (DC) .................................................... 10 

4.1.2 Wearing Surface Dead Load (DW)....................................................................... 11 

4.2 Vehicular Live Loads ..................................................................................................... 11 

4.2.1 General Vehicular Live Load (Article 3.6.1.2) ..................................................... 12 

4.2.2 Optional Live Load Deflection Load (Article 3.6.1.3.2) ...................................... 12 

4.2.3 Fatigue Load (Article 3.6.1.4) ............................................................................... 13 

4.3 Wind Loads .................................................................................................................... 13 

4.4 Load Combinations ........................................................................................................ 13 

5.0 STRUCTURAL ANALYSIS............................................................................................... 15 

5.1 Multiple Presence Factors (Article 3.6.1.1.2) ................................................................ 15 

5.2 Live-Load Distribution Factors (Article 4.6.2.2) ........................................................... 15 

5.2.1 Live-Load Lateral Distribution Factors – Positive Flexure .................................. 15 

5.2.1.1 Interior Girder – Strength and Service Limit States ........................... 17 

5.2.1.1.1 Bending Moment .......................................................................... 17 

5.2.1.1.2 Shear ............................................................................................. 18 



ii 

5.2.1.2 Exterior Girder – Strength and Service Limit States .......................... 18 

5.2.1.2.1 Bending Moment .......................................................................... 18 
5.2.1.2.2 Shear ............................................................................................. 21 

5.2.1.3 Fatigue Limit State .............................................................................. 22 

5.2.1.3.1 Bending Moment .......................................................................... 22 
5.2.1.3.2 Shear ............................................................................................. 22 

5.2.1.4 Distribution Factor for Live-Load Deflection ..................................... 22 

5.2.2 Live-Load Lateral Distribution Factors – Negative Flexure................................. 23 

5.2.3 Dynamic Load Allowance .................................................................................... 25 

6.0 ANALYSIS RESULTS ....................................................................................................... 26 

6.1 Moment and Shear Envelopes ....................................................................................... 26 

6.2 Live Load Deflection ..................................................................................................... 31 

7.0 LIMIT STATES ................................................................................................................... 32 

7.1 Service Limit State (Articles 1.3.2.2 and 6.5.2) ............................................................. 32 

7.2 Fatigue and Fracture Limit State (Article 1.3.2.3 and 6.5.3) ......................................... 32 

7.3 Strength Limit State (Articles 1.3.2.4 and 6.5.4) ........................................................... 32 

7.4 Extreme Event Limit State (Articles 1.3.2.5 and 6.5.5) ................................................. 32 

8.0 SAMPLE CALCULATIONS .............................................................................................. 33 

8.1 Section Properties .......................................................................................................... 33 

8.1.1 Section 1 – Positive Bending Region.................................................................... 33 

8.1.1.1 Effective Flange Width (Article 4.6.2.6) ............................................ 33 

8.1.1.2 Elastic Section Properties: Section 1 .................................................. 34 

8.1.1.3 Plastic Moment: Section 1 .................................................................. 35 

8.1.1.4 Yield Moment: Section 1 .................................................................... 36 

8.1.2 Section 2 – Negative Bending Region .................................................................. 37 

8.1.2.1 Effective Flange Width (Article 4.6.2.6) ............................................ 37 

8.1.2.2 Minimum Negative Flexure Concrete Deck Reinforcement (Article 

6.10.1.7) 37 

8.1.2.3 Elastic Section Properties: Section 2 .................................................. 38 

8.1.2.4 Plastic Moment: Section 2 .................................................................. 40 

8.1.2.5 Yield Moment: Section 2 .................................................................... 41 

8.2 Exterior Girder Check: Section 2 ................................................................................... 42 



iii 

8.2.1 Strength Limit State (Article 6.10.6) .................................................................... 42 

8.2.1.1 Flexure (Appendix A) ......................................................................... 42 

8.2.1.2 Moment Redistribution (Appendix B, Sections B6.1 – B6.5) ............ 49 

8.2.1.2.1 Web Proportions ........................................................................... 49 
8.2.1.2.2 Compression Flange Proportions .................................................. 49 
8.2.1.2.3 Compression Flange Bracing Distance ......................................... 50 
8.2.1.2.4 Shear ............................................................................................. 50 

8.2.1.3 Moment Redistribution - Refined Method (Appendix B, Section B6.6)

 53 

8.2.1.4 Shear (6.10.6.3) ................................................................................... 55 

8.2.2 Constructibility (Article 6.10.3) ............................................................................ 55 

8.2.2.1 Deck Placement Analysis ................................................................... 56 

8.2.2.1.1 Strength I ....................................................................................... 57 
8.2.2.1.2 Strength IV .................................................................................... 57 

8.2.2.2 Deck Overhang Loads......................................................................... 57 

8.2.2.2.1 Strength I ....................................................................................... 61 
8.2.2.2.2 Strength IV .................................................................................... 62 

8.2.2.3 Flexure (Article 6.10.3.2) .................................................................... 62 

8.2.2.3.1 Compression Flange: .................................................................... 63 

8.2.2.3.2 Tension Flange: ............................................................................. 68 

8.2.2.4 Shear (Article 6.10.3.3) ....................................................................... 68 

8.2.3 Service Limit State (Article 6.10.4) ...................................................................... 68 

8.2.3.1 Permanent Deformations (Article 6.10.4.2) ........................................ 68 

8.2.4 Fatigue and Fracture Limit State (Article 6.10.5) ................................................. 71 

8.2.4.1 Load Induced Fatigue (Article 6.6.1.2) ............................................... 71 

8.2.4.2 Distortion Induced Fatigue (Article 6.6.1.3) ....................................... 72 

8.2.4.3 Fracture (Article 6.6.2) ....................................................................... 72 

8.2.4.4 Special Fatigue Requirement for Webs (Article 6.10.5.3) .................. 72 

8.3 Exterior Girder Check: Section 1-1 ............................................................................... 73 

8.3.1 Constructibility (Article 6.10.3) ............................................................................ 73 

8.3.1.1 Deck Placement Analysis ................................................................... 73 

8.3.1.1.1 Strength I:...................................................................................... 73 
8.3.1.1.2 Strength IV: ................................................................................... 73 

8.3.1.2 Deck Overhang Loads......................................................................... 73 

8.3.1.2.1 Strength I:...................................................................................... 76 



iv 

8.3.1.2.2 Strength IV: ................................................................................... 77 

8.3.1.3 Flexure (Article 6.10.3.2) .................................................................... 77 

8.3.1.3.1 Compression Flange...................................................................... 77 
8.3.1.3.2 Tension Flange .............................................................................. 82 

8.3.1.4 Shear (Article 6.10.3.3) ....................................................................... 82 

8.3.2 Service Limit State (Article 6.10.4) ...................................................................... 82 

8.3.2.1 Elastic Deformations (Article 6.10.4.1) .............................................. 83 

8.3.2.2 Permanent Deformations (Article 6.10.4.2) ........................................ 83 

8.3.3 Fatigue and Fracture Limit State (Article 6.10.5) ................................................. 83 

8.3.3.1 Load Induced Fatigue (Article 6.6.1.2) ............................................... 83 

8.3.3.2 Special Fatigue Requirement for Webs (Article 6.10.5.3) .................. 84 

8.3.4 Strength Limit State (Article 6.10.6) .................................................................... 84 

8.3.4.1 Flexure (Article 6.10.6.2) .................................................................... 84 

8.3.4.2 Ductility Requirements (6.10.7.3) ...................................................... 86 

8.3.4.3 Shear (6.10.6.3) ................................................................................... 86 

8.4 Cross-frame Design ....................................................................................................... 87 

8.4.1 Intermediate Cross-frame Design ......................................................................... 88 

8.4.1.1 Bottom Strut ........................................................................................ 88 

8.4.1.1.1 Axial Compression........................................................................ 90 
8.4.1.1.2 Flexure: Major-Axis Bending (W-W) .......................................... 92 
8.4.1.1.3 Flexure: Minor-Axis Bending(Z-Z) .............................................. 94 
8.4.1.1.4 Flexure and Axial Compression: .................................................. 94 

8.4.1.2 Diagonals ............................................................................................ 95 

8.4.2 End Cross-frame Design ....................................................................................... 96 

8.4.2.1 Top Strut ............................................................................................. 96 

8.4.2.1.1 Strength I:...................................................................................... 98 
8.4.2.1.2 Strength III: ................................................................................. 102 

8.4.2.1.3 Strength V: .................................................................................. 103 

8.4.2.2 Diagonals .......................................................................................... 103 

8.4.2.2.1 Strength I:.................................................................................... 104 
8.4.2.2.2 Strength III: ................................................................................. 104 
8.4.2.2.3 Strength V: .................................................................................. 104 

8.4.2.2.4 Flexure: Major-Axis Bending (W-W) ........................................ 105 
8.4.2.2.5 Flexure: Minor-Axis Bending (Z-Z): .......................................... 107 

8.4.2.2.6 Flexure and Axial Compression: ................................................ 108 

8.5 Stiffener Design ........................................................................................................... 108 



v 

8.5.1 Bearing Stiffener Design..................................................................................... 108 

8.5.1.1 Projecting Width (Article 6.10.11.2.2) ............................................. 110 

8.5.1.2 Bearing Resistance (Article 6.10.11.2.3) .......................................... 111 

8.5.1.3 Axial Resistance of Bearing Stiffeners (Article 6.10.11.2.4) ........... 111 

8.5.1.4 Bearing Stiffener-to-Web Welds ...................................................... 113 

8.6 Weld Design................................................................................................................. 114 

8.6.1 Steel Section: ...................................................................................................... 114 

8.6.2 Long-term Section: ............................................................................................. 114 

8.6.3 Short-term Section: ............................................................................................. 114 

9.0 References .......................................................................................................................... 117 

 

 



vi 

List of Figures 

 
Figure 1  Sketch of the Typical Bridge Cross Section .................................................................... 4 

Figure 2  Sketch of the Superstructure Framing Plan ..................................................................... 5 

Figure 3  Sketch of the Girder Elevation ........................................................................................ 6 

Figure 4  Sketch of Section 1, Positive Bending Region .............................................................. 16 

Figure 5  Sketch of the Truck Location for the Lever Rule .......................................................... 19 

Figure 6  Sketch of the Truck Locations for Special Analysis ..................................................... 21 

Figure 7  Sketch of Section 2, Negative Bending Region ............................................................ 23 

Figure 8  Dead and Live Load Moment Envelopes ...................................................................... 26 

Figure 9  Dead and Live Load Shear Envelopes........................................................................... 27 

Figure 10  Fatigue Live Load Moments ....................................................................................... 27 

Figure 11  Fatigue Live Load Shears ............................................................................................ 28 

Figure 12  AASHTO LRFD Moment-Rotation Model................................................................. 53 

Figure 13  Determination of Mpe Using Refined Method ............................................................. 54 

Figure 14  Determination of Rotation at Pier Assuming No Continuity ...................................... 55 

Figure 15  Deck Placement Sequence ........................................................................................... 56 

Figure 16  Deck Overhang Bracket Loads .................................................................................... 58 

Figure 17  Intermediate Cross Frame ............................................................................................ 88 

Figure 18  Single Angle for Intermediate Cross Frame ................................................................ 89 

Figure 19  End Cross Frame ......................................................................................................... 96 

Figure 20  Live load on Top Strut ................................................................................................. 98 

 



vii 

List of Tables 

 
Table 1  Section 1 Steel Only Section Properties ......................................................................... 17 

Table 2  Positive Bending Region Distribution Factors ............................................................... 23 

Table 3  Section 2 Steel Only Section Properties ......................................................................... 24 

Table 4  Negative Bending Region Distribution Factors .............................................................. 25 

Table 5  Unfactored and Undistributed Moments (kip-ft) ............................................................ 28 

Table 6  Unfactored and Undistributed Live Load Moments (kip-ft) .......................................... 29 

Table 7  Strength I Load Combination Moments (kip-ft) ............................................................. 29 

Table 8  Service II Load Combination Moments (kip-ft) ............................................................. 29 

Table 9  Unfactored and Undistributed Shears (kip) .................................................................... 30 

Table 10  Unfactored and Undistributed Live Load Shears (kip) ................................................. 30 

Table 11  Strength I Load Combination Shear (kip) ..................................................................... 30 

Table 12  Section 1 Short Term Composite (n) Section Properties (Exterior Girder) .................. 34 

Table 13  Section 1 Long Term Composite (3n) Section Properties (Exterior Girder) ................ 34 

Table 14  Section 2 Short Term Composite (n) Section Properties .............................................. 38 

Table 15  Section 2 Long Term Composite (3n) Section Properties ............................................ 39 

Table 16  Section 2 Steel Section and Longitudinal Reinforcement Section Properties .............. 39 

Table 17  Moments from Deck Placement Analysis (kip-ft) ........................................................ 57 

 

 



 1 

FOREWORD 

 
It took an act of Congress to provide funding for the development of this comprehensive 
handbook in steel bridge design.  This handbook covers a full range of topics and design 
examples to provide bridge engineers with the information needed to make knowledgeable 
decisions regarding the selection, design, fabrication, and construction of steel bridges. The 
handbook is based on the Fifth Edition, including the 2010 Interims, of the AASHTO LRFD 
Bridge Design Specifications.  The hard work of the National Steel Bridge Alliance (NSBA) and 
prime consultant, HDR Engineering and their sub-consultants in producing this handbook is 
gratefully acknowledged.  This is the culmination of seven years of effort beginning in 2005. 
 
The new Steel Bridge Design Handbook is divided into several topics and design examples as 
follows: 
 

 Bridge Steels and Their Properties 
 Bridge Fabrication 
 Steel Bridge Shop Drawings 
 Structural Behavior 
 Selecting the Right Bridge Type 
 Stringer Bridges 
 Loads and Combinations 
 Structural Analysis 
 Redundancy 
 Limit States 
 Design for Constructibility 
 Design for Fatigue 
 Bracing System Design 
 Splice Design 
 Bearings 
 Substructure Design 
 Deck Design 
 Load Rating 
 Corrosion Protection of Bridges 
 Design Example: Three-span Continuous Straight I-Girder Bridge 
 Design Example: Two-span Continuous Straight I-Girder Bridge 
 Design Example: Two-span Continuous Straight Wide-Flange Beam Bridge 
 Design Example: Three-span Continuous Straight Tub-Girder Bridge 
 Design Example: Three-span Continuous Curved I-Girder Beam Bridge 
 Design Example: Three-span Continuous Curved Tub-Girder Bridge 

 
These topics and design examples are published separately for ease of use, and available for free 
download at the NSBA and FHWA websites: http://www.steelbridges.org, and 
http://www.fhwa.dot.gov/bridge, respectively.  
 

http://www.fhwa.dot.gov/bridge/
http://wwwcf.fhwa.dot.gov/exit.cfm?link=http://www.steelbridges.org/
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The contributions and constructive review comments during the preparation of the handbook 
from many engineering processionals are very much appreciated.  The readers are encouraged to 
submit ideas and suggestions for enhancements of future edition of the handbook to Myint Lwin 
at the following address:  Federal Highway Administration, 1200 New Jersey Avenue, S.E., 
Washington, DC 20590. 
                                                                                                   

                                                                                                  
                                                                                                    M. Myint Lwin, Director 
                                                                                                    Office of Bridge Technology 
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1.0 INTRODUCTION 

 
The purpose of this example is to illustrate the use of the Fifth Edition of the AASHTO LRFD 

Bridge Design Specifications [1], referred to herein as AASHTO LRFD (5
th

 Edition, 2010) for the 
design of a continuous steel I-girder bridge. The design process and corresponding calculations 
for steel I-girders are the focus of this example, with particular emphasis placed on illustration of 
the optional moment redistribution procedures. All aspects of the girder design are presented, 
including evaluation of the following: cross-section proportion limits, constructibility, 
serviceability, fatigue, and strength requirements. Additionally, the weld design for the web-to-
flange joint of the plate girders is demonstrated along with all applicable components of the 
stiffener design and lateral bracing design. 
 
The moment redistribution procedures allow for a limited degree of yielding at the interior 
supports of continuous-span girders. The subsequent redistribution of moment results in a 
decrease in the negative bending moments and a corresponding increase in positive bending 
moments. The current moment redistribution procedures utilize the same moment envelopes as 
used in a conventional elastic analysis and do not require the use of iterative procedures or 
simultaneous equations. The method is similar to the optional provisions in previous AASHTO 
specifications that permitted the peak negative bending moments to be decreased by 10% before 
performing strength checks of the girder. However, in the present method this empirical 
percentage is replaced by a calculated quantity, which is a function of geometric and material 
properties of the girder. Furthermore, the range of girders for which moment redistribution is 
applicable is expanded compared to previous editions of the specifications, in that girders with 
slender webs may now be considered. The result of the use of these procedures is considerable 
economical savings. Specifically, inelastic design procedures may offer cost savings by (1) 
requiring smaller girder sizes, (2) eliminating the need for cover plates (which have unfavorable 
fatigue characteristics) in rolled beams, and (3) reducing the number of flange transitions without 
increasing the amount of material required in plate girder designs, leading to both material and, 
more significantly, fabrication cost savings.  
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2.0 DESIGN PARAMETERS 

 
The bridge cross-section for the tangent, two-span (90 ft - 90 ft) continuous bridge under 
consideration is given below in Figure 1. The example bridge has four plate girders spaced at 
10.0 ft and 3.5 ft overhangs. The roadway width is 34.0 ft and is centered over the girders. The 
reinforced concrete deck is 8.5 inch thick, including a 0.5 inch integral wearing surface, and has 
a 2.0 inch haunch thickness. 
 
The framing plan for this design example is shown in Figure 2. As will be demonstrated 
subsequently, the cross frame spacing is governed by constuctibility requirements in positive 
bending and by moment redistribution requirements in negative bending.  
 
The structural steel is ASTM A709, Grade 50W, and the concrete is normal weight with a 
compressive strength of 4.0 ksi. The concrete slab is reinforced with nominal Grade 60 
reinforcing steel. 
  
The design specifications are the AASHTO LRFD (5

th
 Edition, 2010) Bridge Design 

Specifications. Unless stated otherwise, the specific articles, sections, and equations referenced 
throughout this example are contained in these specifications.  
 
The girder design presented herein is based on the premise of providing the same girder design 
for both the interior and exterior girders. Thus, the design satisfies the requirements for both 
interior and exterior girders. Additionally, the girders are designed assuming composite action 
with the concrete slab. 
 

 
Figure 1  Sketch of the Typical Bridge Cross Section 
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Figure 2  Sketch of the Superstructure Framing Plan 
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3.0 GIRDER GEOMETRY 

 
The girder elevation is shown in Figure 3. As shown in Figure 3, section transitions are provided 
at 30% of the span length (27 feet) from the interior pier. The design of the girder from the 
abutment to 63 feet from the abutment is primarily based on positive bending moments; thus, this 
section of the girder is referred to as either the “positive bending region” or “Section 1” 
throughout this example. Alternatively, the girder geometry at the pier is controlled by negative 
bending moments; consequently the region of the girder extending from 0 to 27 feet on each side 
of the pier will be referred to as the “negative bending region” or “Section 2”. The rationale used 
to develop the cross-sectional geometry of these sections and a demonstration that this geometry 
satisfies the cross-section proportion limits specified in Article 6.10.2 is presented herein. 
 
3.1 Web Depth 

 
Selection of appropriate web depth has a significant influence on girder geometry. Thus, initial 
consideration should be given to the most appropriate web depth. In the absence of other criteria 
the span-to-depth ratios given in Article 2.5.2.6.3 may be used as a starting point for selecting a 
web depth. As provided in Table 2.5.2.6.3-1, the minimum depth of the steel I-beam portion of a 
continuous-span composite section is 0.027L, where L is the span length. Thus, the minimum 
steel depth is computed as follows. 
 

0.027(90 ft)(12 in./ft) = 29.2 inches 
 
Preliminary designs were evaluated for five different web depths satisfying the above 
requirement. These web depths varied between 36 inches and 46 inches and in all cases girder 
weight decreased as web depth increased. However, the decrease in girder weight became much 
less significant for web depths greater than 42 inches. 
 

 
 

Figure 3  Sketch of the Girder Elevation 

 
3.2 Web Thickness 

 
The thickness of the web was selected to satisfy shear requirements at the strength limit state 
without the need for transverse stiffeners. This resulted in a required web thickness of 0.5 inch at 
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the pier and 0.4375 inch at the abutments. The designer may also want to examine the economy 
of using a constant 0.5 inch web throughout. 
 
In developing the preliminary cross-section it should also be verified that the selected 
dimensions satisfy the cross-section proportion limits required in Article 6.10.2. The required 
web proportions are given in Article 6.10.2.1 where, for webs without longitudinal stiffeners, the 
web slenderness is limited to a maximum value of 150.  
 

w

D 150
t

  Eq. (6.10.2.1.1-1) 

 
Thus, the following calculations demonstrate that Eq. 6.10.2.1.1-1 is satisfied for both the 
positive and negative moment regions of the girder, respectively. 
 

w

D 42 96 150
t 0.4375

    (satisfied) 

 

w

D 42 84 150
t 0.5

    (satisfied) 

 
3.3 Flange Geometries 

 
The width of the compression flange in the positive bending region was controlled by 
constructability requirements as the flange lateral bending stresses are directly related to the 
section modulus of the flange about the y-axis of the girder as well as the lateral bracing 
distance. Various lateral bracing distances were investigated and the corresponding flange width 
required to satisfy constructability requirements for each case was determined. Based on these 
efforts it was determined that a minimum flange width of 14 in. was needed to avoid the use of 
additional cross-frames. Thus, this minimum width was used for the top flanges. 
 
All other plate sizes were iteratively selected to satisfy all applicable requirements while 
producing the most economical girder design possible. The resulting girder dimensions are 
illustrated in Figure 3.  
 
Article 6.10.2.2 specifies four flange proportions limits that must be satisfied. The first of these 
is intended to prevent the flange from excessively distorting when welded to the web of the 
girder during fabrication. 
 

f

f

b 12.0
2t

  Eq. (6.10.2.2-1) 

 
Evaluation of Eq. 6.10.2.2-1 for each of the three flange sizes used in the example girder is 
demonstrated below. 
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f

f

b 14 9.33 12.0
2t 2(0.75)

    (satisfied) 

 
f

f

b 14 6.22 12.0
2t 2(1.125)

     (satisfied) 

 
f

f

b 14 6.4 12.0
2t 2(1.25)

    (satisfied) 

 
The second flange proportion limit that must be satisfied corresponds to the relationship between 
the flange width and the web depth. The ratio of the web depth to the flange width significantly 
influences the flexural capacity of the member and is limited to a maximum of 6, which is the 
maximum value for which the moment capacity prediction equations for steel I-girders are 
proven to be valid. 
 

f
D 42b 7.0
6 6

    Eq. (6.10.2.2-2) 

 
It is shown below that Eq. 6.10.2.2-2 is satisfied for both flange widths utilized in this design 
example. 
 

bf = 14.0 inch (satisfied) 
bf = 16.0 inch (satisfied) 

 
Equation 3 of Article 6.10.2.2 limits the thickness of the flange to a minimum of 1.1 times the 
web thickness. This requirement is necessary to ensure that some web shear buckling restraint is 
provided by the flanges, and that the boundary conditions at the web-flange junction assumed in 
the development of the web-bend buckling and flange local buckling are sufficiently accurate. 
 

tf ≥ 1.1 tw Eq. (6.10.2.2-3) 
 
Evaluation of Eq. 6.10.2.2-3 for the minimum flange thickness used in combination with each of 
the web thicknesses utilized in the example girder is demonstrated below. 
 

f f-mint = t 0.75 1.1(0.4375) 0.48    (satisfied) 
 

f f-mint = t 1.125 1.1(0.5) 0.55    (satisfied) 
 

Equation 6.10.2.2-4 sets limits for designed sections similar to the previsions of previous 
specifications. This provision prevents the use of extremely mono symmetric sections ensuring 
more efficient flange proportions and results in a girder section suitable for handling during 
erection. 
 

yc

yt

I
0.1 10

I
   Eq. (6.10.2.2-4) 
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where: Iyc  =  moment of inertia of the compression flange of the steel section about the 

vertical axis in the plane of the web (in.4) 
 

 Iyt  =  moment of inertia of the tension flange of the steel section about the vertical 
axis in the plane of the web (in.4) 
 

Computing the ratio between the top and bottom flanges for the positive and negative bending 
regions, respectively, shows that this requirement is satisfied for the design girder. 
 

3

3

(0.75)(14) /12 171.50.1 0.40 10
(1.25)(16) /12 426.7

     (satisfied) 

 
3

3

(1.125)(14) /12 257.250.1 0.60 10
(1.25)(16) /12 426.7

     (satisfied) 
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4.0 LOADS 

 
This example considers all applicable loads acting on the super-structure including dead loads, 
live loads, and wind loads as discussed below. In determining the effects of each of these loads, 
the approximate methods of analysis specified in Article 4.6.2 are implemented. 
 
4.1 Dead Loads 

The dead load, according to Article 3.5.1, is to include the weight of all components of the 
structure, appurtenances and utilities, earth cover, wearing surface, future overlays, and planned 
widening. Dead loads are divided into three categories: dead load of structural components and 
non-structural attachments (DC) and the dead load of wearing surface and utilities (DW). 
Alternative load factors are specified for each of these three categories of dead load depending 
on the load combination under consideration. 
 
4.1.1 Component And Attachment Dead Load (DC) 

 
For composite girders consideration is given to the fact that not all loads are applied to the 
composite section and the DC dead load is separated into two parts: the dead load acting on the 
section before the concrete deck is hardened or made composite (DC1), and the dead load acting 
on the composite section (DC2). DC1 is assumed to be carried by the steel section alone. DC2 is 
assumed to be carried by the long-term composite section. In the positive bending region the 
long-term composite section is comprised of the steel girder and an effective width of the 
concrete slab. Formulas are given in the specifications to determine the effective slab width over 
which a uniform stress distribution may be assumed. The effective width of the concrete slab is 
transformed into an equivalent area of steel by multiplying the width by the ratio between the 
steel modulus and one-third the concrete modulus, which is typically referred to as a modular 
ratio of 3n. The reduced concrete modulus is intended to account for the effects of concrete 
creep. In the negative bending region the composite section is comprised of the steel section and 
the longitudinal steel reinforcing within the effective width of the slab. 
 
DC1 includes the girder self weight, weight of concrete slab (including the haunch and overhang 
taper), deck forms, cross frames, and stiffeners. The unit weight for steel (0.490 k/ft3) used in 
this example is taken from Table 3.5.1-1, which provides approximate unit weights of various 
materials. Table 3.5.1-1 also lists the unit weight of normal weight concrete as 0.145 k/ft3; the 
concrete unit weight is increased to 0.150 k/ft3 in this example to account for the additional 
weight of the steel reinforcement within the concrete. The dead load of the stay-in-place forms is 
assumed to be 15 psf. To account for the dead load of the cross-frames, stiffeners and other 
miscellaneous steel details a dead load of 0.015 k/ft. is assumed. It is also assumed that these 
dead loads are equally distributed to all girders as permitted by Article 4.6.2.2.1 for the line-
girder type of analysis implemented herein. Thus, the total DC1 loads used in this design are as 
computed below. 
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Slab = (8.5/12) x (37) x (0.150)/4 = 0.983 k/ft 
  
Haunch (average wt/length) = 0.017 k/ft 
  
Overhang taper = 2 x (1/2) x [3.5-(7/12)] x (2/12) x 0.150/4 = 0.018 k/ft 
  
Girder (average wt/length) = 0.174 k/ft 
  
Cross-frames and misc. steel = 0.015 k/ft 
  
Stay-in-place forms = 0.015 x (30-3 x (12/12))/4 = 0.101 k/ft 
  
Total DC1 =1.308 k/ft 

 
DC2 is composed of the weight from the barriers, medians, and sidewalks. No sidewalks or 
medians are present in this example and thus the DC2 weight is equal to the barrier weight alone. 
The parapet weight is assumed to be equal to 520 lb/ft. Article 4.6.2.2.1 specifies that when 
approximate methods of analysis are applied DC2 may be equally distributed to all girders or a 
larger proportion of the concrete barriers may be applied to the exterior girder. In this example, 
the barrier weight is equally distributed to all girders, resulting in the DC2 loads computed 
below. 
 

Barriers = (0.520 x 2)/4 = 0.260 k/ft 
 
DC2 = 0.260 k/ft 
 

4.1.2 Wearing Surface Dead Load (DW) 

 
Similar to the DC2 loads, the dead load of the future wearing surface is applied to the long-term 
composite section and is assumed to be equally distributed to each girder. A future wearing 
surface with a dead load of 25 psf is assumed. Multiplying this unit weight by the roadway width 
and dividing by the number of girders gives the following. 
 

Wearing surface = (0.025) x (34)/4 = 0.213 k/ft 
 
DW = 0.213 k/ft 
 

4.2 Vehicular Live Loads 

 
The AASHTO LRFD (5

th
 Edition, 2010) Specifications consider live loads to consist of gravity 

loads, wheel load impact (dynamic load allowance), braking forces, centrifugal forces, and 
vehicular collision forces. Live loads are applied to the short-term composite section. In positive 
bending regions, the short-term composite section is comprised of the steel girder and the 
effective width of the concrete slab, which is converted into an equivalent area of steel by 
multiplying the width by the modular ratio between steel and concrete. In other words, a modular 
ratio of n is used for short-term loads where creep effects are not relevant.  In negative bending 
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regions the short-term composite section consists of the steel girder and the longitudinal 
reinforcing steel, except for live-load deflection and fatigue requirements in which the concrete 
deck may be considered in both negative and positive bending.  
 
4.2.1 General Vehicular Live Load (Article 3.6.1.2)  

 
The AASHTO LRFD (5

th
 Edition, 2010) vehicular live loading is designated as the HL-93 

loading and is a combination of the design truck or tandem plus the design lane load. The design 
truck, specified in Article 3.6.1.2.2, is composed of an 8-kip lead axle spaced 14 feet from the 
closer of two 32-kip rear axles, which have a variable axle spacing of 14 feet to 30 feet. The 
transverse spacing of the wheels is 6 feet. The design truck occupies a 10 feet lane width and is 
positioned within the design lane to produce the maximum force effects, but may be no closer 
than 2 feet from the edge of the design lane, except for in the design of the deck overhang.  
 
The design tandem, specified in Article 3.6.1.2.3, is composed of a pair of 25-kip axles spaced 4 
feet apart. The transverse spacing of the wheels is 6 feet. 
 
The design lane load is discussed in Article 3.6.1.2.4 and has a magnitude of 0.64 klf uniformly 
distributed in the longitudinal direction. In the transverse direction, the load occupies a 10 foot 
width. The lane load is positioned to produce extreme force effects, and therefore, need not be 
applied continuously. 
 
For both negative moments between points of contraflexure and interior pier reactions a special 
loading is used. The loading consists of two design trucks (as described above but with the 
magnitude of 90% the axle weights) in addition to the lane loading. The trucks must have a 
minimum headway of 50 feet between the two loads. The live load moments between the points 
of dead load contraflexure are to be taken as the larger of the HL-93 loading or the special 
negative loading. 
 
Live load shears are to be calculated only from the HL-93 loading, except for interior pier 
reactions, which are the larger of the HL-93 loading or the special  negative loading. 
 
The dynamic load allowance, which accounts for the dynamic effects of force amplification, is 
only applied to the truck portion of the live loading, and not the lane load. For the strength and 
service limit states, the dynamic load allowance is taken as 33 percent, and for the fatigue limit 
state, the dynamic load allowance is taken as 15 percent.  
 
4.2.2 Optional Live Load Deflection Load (Article 3.6.1.3.2)  

 
The loading for the optional live load deflection criterion consists of the greater of the design 
truck, or 25 percent of the design truck plus the lane load. A dynamic load allowance of 33 
percent applies to the truck portions (axle weights) of these load cases. During this check, all 
design lanes are to be loaded, and the assumption is made that all components deflect equally. 
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4.2.3 Fatigue Load (Article 3.6.1.4) 

 
For checking the fatigue limit state, a single design truck with a constant rear axle spacing of 30 
feet is applied.  
 
4.3 Wind Loads 

 
Article 3.8.1.2 discusses the design horizontal wind pressure, PD, which is used to determine the 
wind load on the structure. The wind pressure is computed as follows: 
 

2

10,000
DZ

D B

V
P P  Eq. (3.8.1.2.1-1) 

 
where: PB =  base wind pressure of 0.050 ksf for beams (Table 3.8.1.2.1-1) 
 VDZ =  design wind velocity at design elevation, Z (mph) 

 
In this example it is assumed the superstructure is less than 30 feet above the ground, at which 
the wind velocity is prescribed to equal 100 mph, which is designated as the base wind velocity, 
VB. With VDZ equal to the base wind velocity of 100 in Eq. 3.8.1.2.1-1 the horizontal wind 
pressure, PD, is determined as follows. 
 

21000.050 0.050ksf
10,000DP    

 
4.4 Load Combinations 

 
The specifications define four limit states: the service limit state, the fatigue and fracture limit 
state, the strength limit state, and the extreme event limit state. The subsequent sections discuss 
each limit state in more detail; however for all limit states the following general equation from 
Article 1.3.2.1 must be satisfied, where different combinations of loads (i.e., dead load, wind 
load) are specified for each limit state. 
 

DR IΣi Qi≤ RnRr 

 
where: 
  
 D  = Ductility factor (Article 1.3.3) 
 R = Redundancy factor (Article 1.3.4) 
 I = Operational importance factor (Article 1.3.5) 
 i = Load factor 
 Qi = Force effect 
  = Resistance factor 
 Rn = Nominal resistance 
 Rr = Factored resistance 
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The factors relating to ductility and redundancy are related to the configuration of the structure, 
while the operational importance factor is related to the consequence of the bridge being out of 
service. The product of the three factors results in the load modifier, and is limited to the 
range between 0.95 and 1.00. In this example, the ductility, redundancy, and operational 
importance factors are each assigned a value equal to one. The load factors are given in Tables 
3.4.1-1 and 3.4.1-2 of the specifications and the resistance factors for the design of steel 
members are given in Article 6.5.4.2. 
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5.0 STRUCTURAL ANALYSIS 

 
The AASHTO LRFD (5

th
 Edition, 2010) specifications allow the designer to use either 

approximate (e.g., line girder) or refined (e.g., grid or finite element) analysis methods to 
determine force effects; the acceptable methods of analysis are detailed in Section 4 of the 
specifications. In this design example, the line girder approach is employed to determine the 
girder moment and shear envelopes. Using the line girder approach, vehicular live load force 
effects are determined by first computing the force effects due to a single truck or loaded lane 
and then by multiplying these forces by multiple presence factors, live-load distribution factors, 
and dynamic load allowance factors as detailed below. 
 
5.1 Multiple Presence Factors (Article 3.6.1.1.2) 

 
Multiple presence factors account for the probability of multiple lanes on the bridge being loaded 
simultaneously. These factors are specified for various numbers of loaded lanes in Table 
3.6.1.1.2-1 of the specifications. There are two exceptions when multiple presence factors are not 
to be applied. These are when (1) distribution factors are calculated using Article 4.6.2.2.1 as 
these equations are already adjusted to account for multiple presence effects and (2) when 
determining fatigue truck moments, since the fatigue analysis is only specified for a single truck. 
Thus, for the present example, the multiple presence factors are only applicable when 
distribution factors are computed using the lever rule at the strength and service limit states as 
demonstrated below. 
 
5.2 Live-Load Distribution Factors (Article 4.6.2.2) 

 
The distribution factors approximate the amount of live load (i.e., percentage of a truck or lane 
load) distributed to a given girder. These factors are computed based on a combination of 
empirical equations and simplified analysis procedures. Empirical equations are provided in 
Article 4.6.2.2.1 of the specifications and are specifically developed based on the location of the 
girder (i.e. interior or exterior), the force effect considered (i.e., moment or shear), and the bridge 
type. These equations are valid only if specific parameters of the bridge are within the ranges 
specified in the tables given in Article 4.6.2.2.1. If the limits are not satisfied, a more refined 
analysis must be performed. This design example satisfies all limits for use of the empirical 
distribution factors, and therefore, the analysis using the approximate equations follows. 
 
Distribution factors are a function of the girder spacing, slab thickness, span length, and the 
stiffness of the girder, which depends on the proportions of the section. Since the factor depends 
on the girder proportion that is not initially known, the stiffness term may be assumed to be equal 
to one for preliminary design. In this section, calculation of the distribution factors is presented 
based on the girder proportions previously shown in Figure 3.  
 
5.2.1 Live-Load Lateral Distribution Factors – Positive Flexure 

 
In positive bending regions, the stiffness parameter required for the distribution factor equations, 
Kg, is determined based on the cross section in Figure 4. 
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Kg = n(I + Aeg
2)        Eq. (4.6.2.2.1-1) 

 
where: 
 
 n  = modular ratio 
 I = moment of inertia of the steel girder 
 A = area of the steel girder 
 eg = distance between the centroid of the girder and centroid of the slab 
 
The required section properties of the girder (in addition to other section properties that will be 
relevant for subsequent calculations) are determined as follows. 
 

eg = 8.0 / 2 + 2.0 + 26.01 - 0.75 = 31.26 in. 
 
n = 8 
 
Kg = n(I + Aeg

2) = 8(15,969 + 48.88(31.26)2) = 509,871 in.4 
 
 

 
Figure 4  Sketch of Section 1, Positive Bending Region 
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Table 1  Section 1 Steel Only Section Properties 

 
 
 
5.2.1.1 Interior Girder – Strength and Service Limit States 

 
For interior girders, computation of the distribution factors for the strength and service limit 
states is based on the empirical equations given in Article 4.6.2.2.2 as described below. 
 
5.2.1.1.1 Bending Moment 

The empirical equations for distribution of live load moment at the strength and service limit 
states are given in Table 4.6.2.2.2b-1. Alternative expressions are given for one loaded lane and 
multiple loaded lanes, where the maximum of the two equations governs as shown below. It is 
noted that the maximum number of lanes possible for the 34 feet roadway width considered in 
this example is two lanes. 
 

0.10.4 0.3

3DF 0.06
14 12.0

g

s

KS S

L Lt

    
      

     
for one-lane loaded 

 
where: S  =  girder spacing 
 L  =  span length 
 ts  =  slab thickness 
 Kg

  =  stiffness term  
 

DF = 
  

0.10.4 0.3

3

10.0 10.0 5098710.06
14 90 12.0 90 8.0

    
            

 = 0.508 lanes 
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1.0

3
g

2.06.0

Lt0.12
K

L
S

5.9
S075.0FD 
























  for two or more lanes loaded 

DF = 
  

0.10.6 0.2

3

10.0 10.0 5098710.075 0.734lanes
9.5 90 12.0 90 8.0

    
            

 (governs) 

 
Thus, the controlling distribution factor for moment of an interior girder in the positive moment 
region at the strength or service limit state is 0.734 lanes. 
 
5.2.1.1.2 Shear 

The empirical equations for distribution of live load shear in an interior girder at the strength and 
service limit states are given in Table 4.6.2.2.3a-1. Similar to the equations for moment given 
above, alternative expressions are given based on the number of loaded lanes. 
 

DF = 36.0
25.0

S
  for one lane loaded 

 

DF = 10.036.0
25.0

 = 0.760 lanes 

 

DF = 
2

0.2
12 35
S S 

   
 

for two lanes loaded 

 

DF = 
210.0 10.00.2

12 35
 

   
 

= 0.952 lanes (governs) 

 
5.2.1.2 Exterior Girder – Strength and Service Limit States 

 
The live load distribution factors for an exterior girder for checking the strength limit state are 
determined as the governing factors calculated using a combination of the lever rule, 
approximate formulas, and a special analysis assuming that the entire cross section deflects and 
rotates as a rigid body. Each method is illustrated below.  
 
5.2.1.2.1 Bending Moment 

Lever Rule: 
As specified in Table 4.6.2.2.2d-1, the lever rule is one method used to determine the distribution 
factor for the exterior girder. The lever rule assumes the deck is hinged at the interior girder, and 
statics is employed to determine the percentage of the truck weight resisted by the exterior 
girder, i.e., the distribution factor. It is specified that the truck is to be placed such that the closest 
wheel is two feet from the barrier or curb, which results in the truck position shown in Figure 5 
for the present example. The calculated reaction of the exterior girder is multiplied by the 
multiple presence factor for one lane loaded, m1, to determine the distribution factor. 
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DF = 1
10 60.5 0.5 m

10
  

  
  

 

 
m1 = 1.20 (from Table 3.6.1.1.2-1) 
 
DF = 0.7 x 1.2 = 0.840 lanes 

 

 
Figure 5  Sketch of the Truck Location for the Lever Rule 

 
Modified Interior Girder Distribution Factor: 
The modification factor, e, is found in Table 4.6.2.2.2d-1 and is given below. 
 

ede=0.77+
9.1

 

 
In the above equation de is the distance between the center of the exterior girder and the interior 
face of the barrier or curb in feet. Thus, for the present example de

 is equal to 2. 
 

2.0e=0.77+
9.1

= 0.990 

 
Multiplying the one-lane loaded distribution factor for moment in the positive moment region of 
an interior girder (which was previously determined to be 0.508 lanes) by the correction factor of 
0.990 gives the following. 
 

DF = 0.990(0.508) = 0.503 lanes 
 
Similarly, modifying the interior girder distribution factor for two or more lanes loaded gives the 
following. 
 

DF = 0.990(0.734) = 0.727 
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Special Analysis: 
The special analysis assumes the entire bridge cross-section behaves as a rigid body rotating 
about the transverse centerline of the structure and is discussed in the commentary of Article 
4.6.2.2.2d. The reaction on the exterior beam is calculated from the following equation: 
 

2

L

b

N

extL

N

b

X eN
R

N
x


 



       Eq. (C4.6.2.2.2d-1) 

where: 
  
 NL = number of lanes loaded 
 
 Nb = number of beams or girders 
 

Xext = horizontal distance from center of gravity of the pattern of girders to the exterior 
girder (ft.) 

 
e  = eccentricity of a design truck or a design lane load from the center of gravity of 

the pattern of girders (ft.) 
 
x  = horizontal distance from the center of gravity of the pattern of girders to each 

girder (ft.) 
 
Figure 6 shows the truck locations for the special analysis. Here it is shown that the maximum 
number of trucks that may be placed on half of the cross-section is two. Thus, we proceed with 
calculation of the distribution factors using the special analysis procedure for one loaded lane 
and two loaded lanes. 
 

 2 2

1 (15)(12)DF 1.2
4 2 (15) (5)

 
  
 
 

= 0.732 for one lane loaded 

 

 
 2 2

2 (15)(12 0)DF 1.0
4 2 (15) (5)

 
  
 
 

 = 0.860 for two lanes loaded (governs) 

 
Based on the computations for exterior girder distribution factors for moment in the positive 
bending region shown above, it is determined that the controlling factor for this case is equal to 
0.860, which is based on the special analysis with two lanes loaded. Compared to the interior 
girder distribution factor for moment in the positive bending region, which was computed to be 
0.734, it is shown that the exterior girder distribution factor is larger, and therefore controls the 
bending strength design at the strength and service limit states in the positive bending region. 
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Figure 6  Sketch of the Truck Locations for Special Analysis 

 
5.2.1.2.2 Shear 

 
The distribution factors computed above using the lever rule, approximate formulas, and special 
analysis methods are also applicable to the distribution of shear force.  
 
Lever Rule: 
The above computations demonstrate that the distribution factor is equal to 0.840 lanes based on 
the lever rule. 
 

DF = 0.840 lanes  
 
Modified Interior Girder Distribution Factor: 
The shear modification factor is computed using the following formula. 
 

ede=0.60+
9.1

 

 
2e 0.60 0.820

9.1
    

 
Applying this modification factor to the previously computed interior girder distribution factors 
for shear for one lane loaded and two or more lanes loaded, respectively, gives the following. 
 

DF = 0.820(0.760) = 0.623 lanes 
 
DF = 0.820(0.952) = 0.781 lanes 
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Special Analysis: 
It was demonstrated above that the special analysis yields the following distribution factors for 
one lane and two or more lanes loaded, respectively. 
 

DF = 0.732 lanes 
 
DF = 0.860 lanes  (governs) 

 
Thus, the controlling distribution factor for shear in the positive bending region of the exterior 
girder is 0.860, which is less than that of the interior girder. Thus, the interior girder distribution 
factor of 0.952 controls the shear design in the positive bending region. 
 
5.2.1.3 Fatigue Limit State 

 
As stated in Article 3.6.1.1.2, the fatigue distribution factor is based on one lane loaded, and does 
not include the multiple presence factor, since the fatigue loading is specified as a single truck 
load. Because the distribution factors calculated from empirical equations incorporate the 
multiple presence factors, the fatigue distribution factors are equal to the strength distribution 
factors divided by the multiple presence factor for one lane, as described subsequently. 
 
5.2.1.3.1 Bending Moment 

Upon reviewing the moment distribution factors for  one lane loaded computed above, it is 
determined that the maximum distribution factor results from the lever rule calculations. 
Dividing this distribution factor of 0.840 by the multiple presence factor for one lane loaded 
results in the following distribution factor for fatigue moment in the positive bending region.  
 

0.840DF 0.700lanes
1.20

   

 
5.2.1.3.2 Shear 

Similarly, based on the above distribution factors for shear due to one lane loaded, the 
controlling distribution factor is calculated by again dividing the lever rule distribution factor by 
the multiple presence factor. 
 

0.840DF 0.700lanes
1.20

   

 
5.2.1.4 Distribution Factor for Live-Load Deflection 

 
Article 2.5.2.6.2 states that all design lanes must be loaded when determining the live load 
deflection of the structure. In the absence of a refined analysis, an approximation of the live load 
deflection can be obtained by assuming that all girders deflect equally and applying the 
appropriate multiple presence factor. The controlling case occurs when two lanes are loaded, and 
the calculation of the corresponding distribution factor is shown below. 
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DF = 21.0 0.500lanes
4

L

b

N
m

N

   
    

  
 

 
Table 2 summarizes the governing distribution factors for the positive bending region. 
 

Table 2  Positive Bending Region Distribution Factors 

 
 
5.2.2 Live-Load Lateral Distribution Factors – Negative Flexure 

 
Many of the distribution factors are the same in both the positive and negative bending regions. 
This section demonstrates the computation of the distribution factors that are unique to the 
negative bending region. Specifically, the distribution factor for the interior girder at the strength 
and service limit states is directly influenced by to the girder proportions. As in the above 
calculations for the positive moment region, this process begins with determining the stiffness 
parameter, Kg of the section. The cross section for the negative bending region is shown in 
Figure 7. The section properties of the girder are determined as follows. 
 

 
Figure 7  Sketch of Section 2, Negative Bending Region 
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Table 3  Section 2 Steel Only Section Properties 

 
 

eg = 8.0 / 2 +2.0 + 23.76 – 1.125 = 28.64 in. 
 

n = 8 
 

Kg = n(I + Aeg
2) = 8(19,616 + 56.75(28.64)2) = 529,321 in.4 

 
As discussed above, the distribution factors for interior girders at the strength and service limit 
states are computed based on the empirical equations given in Article 4.6.2.2.2. 
 
The applicable equations for moment distribution factors from Table 4.6.2.2.2b-1 are as shown 
below. 
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    
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for one lane loaded 

 

DF =
0.4 0.3

3

10.0 10.0 529,3210.06
14 90 12.0(90)(8.0)

    
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= 0.510 lanes 
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
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
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
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
  for two or more lanes loaded 

 

DF =
0.6 0.2

3

10.0 10.0 529,3210.075
9.5 90 12.0(90)(8.0)

    
     
     

= 0.737 lanes 

 
Table 4 summarizes the distribution factors for the negative bending region, where it is shown 
that the exterior girder controls all aspects of the design expect for shear at the strength and 
service limit states. 
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Table 4  Negative Bending Region Distribution Factors 

 
 
5.2.3 Dynamic Load Allowance 

 
The dynamic effects of the truck loading are taken into consideration by the dynamic load 
allowance, IM. The dynamic load allowance, which is discussed in Article 3.6.2 of the 
specifications, accounts for the hammering effect of the wheel assembly and the dynamic 
response of the bridge. IM is only applied to the design truck or tandem, not the lane loading. 
Table 3.6.2.1-1 specifies IM equal to 1.33 for the strength, service, and live load deflection 
evaluations, while IM of 1.15 is specified for the fatigue limit state. 
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6.0  ANALYSIS RESULTS 

 
6.1 Moment and Shear Envelopes 

 
Figures 8 through 11 show the moment and shear envelopes for this design example, which are 
based on the data presented in Tables 5 through 11. These figures show distributed moments for 
the exterior girder and distributed shears for an interior girder, which are the controlling girders 
for each force effect, based on the distribution factors computed above. The envelopes shown are 
determined based on the section properties of the short-term composite section. 
 
As previously mentioned, the live load in the positive bending region between the points of dead 
load contraflexure is the result of the HL-93 loading. In the negative bending region between the 
points of dead load contraflexure, the moments are the larger of the HL-93 loading and the 
special negative-moment loading, which is composed of 90 percent of both the truck-train 
moment and lane loading moment. 
 

 
Figure 8  Dead and Live Load Moment Envelopes 
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Figure 9  Dead and Live Load Shear Envelopes 

 

 
Figure 10  Fatigue Live Load Moments 
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Figure 11  Fatigue Live Load Shears 

 
Table 5  Unfactored and Undistributed Moments (kip-ft) 
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Table 6  Unfactored and Undistributed Live Load Moments (kip-ft) 

 
 

Table 7  Strength I Load Combination Moments (kip-ft) 

 
 

Table 8  Service II Load Combination Moments (kip-ft) 
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Table 9  Unfactored and Undistributed Shears (kip) 

 
 

Table 10  Unfactored and Undistributed Live Load Shears (kip) 

 
 

Table 11  Strength I Load Combination Shear (kip) 
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6.2 Live Load Deflection 

 
As provided in Article 3.6.1.3.2, control of live-load deflection is optional. Evaluation of this 
criterion is based on the flexural rigidity of the short-term composite section and consists of two 
load cases: deflection due to the design truck, and deflection due to the design lane plus 25 
percent of the design truck. The dynamic load allowance of 33 percent is applied to the design 
truck load only for both loading conditions. For this example, the live load is distributed using a 
distribution factor of 0.500 calculated earlier. 
 
The maximum deflection due to the design truck is 0.917 inches. Applying the impact and 
distribution factors gives the following. 
 

LL+IM = 0.500 x 1.33 x 0.917 = 0.610 in. (governs) 
 
The deflection due to 25% of the design truck plus the lane loading is equal to the following. 
 

LL+IM = 0.500 ( 1.33 x 0.25 x 0.917 + 0.475 ) = 0.390 in. 
 
Thus the governing deflection equal to 0.610 inch will be used to assess the girder design based 
on the live-load deflection criterion. 
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7.0 LIMIT STATES 
 
As discussed previously, there are four limit states applicable to the design of steel I-girders. Each of 
these limit states is described below. 
 
7.1 Service Limit State (Articles 1.3.2.2 and 6.5.2) 
 
The intent of the Service Limit State is to ensure the satisfactory performance and rideability of the bridge 
structure by preventing localized yielding. For steel members, these objectives are intended to be satisfied 
by limiting the maximum levels of stress that are permissible. The optional live-load deflection criterion 
is also included in the service limit state and is intended to ensure user comfort. 
 
7.2 Fatigue and Fracture Limit State (Article 1.3.2.3 and 6.5.3) 
 
The intent of the Fatigue and Fracture Limit State is to control crack growth under cyclic loading. This is 
accomplished by limiting the stress range to which steel members are subjected. The allowable stress 
range varies for various design details and member types. The fatigue limit state also restricts the out-of-
plane flexing of the web. Additionally, fracture toughness requirements are stated in Article 6.6.2 of the 
specifications and are dependent on the temperature zone. 
 
7.3 Strength Limit State (Articles 1.3.2.4 and 6.5.4) 
 
The strength limit state ensures the design is stable and has adequate strength when subjected to the 
highest load combinations considered. The bridge structure may experience structural damage (e.g., 
permanent deformations) at the strength limit state, but the integrity of the structure is preserved. 
 
The suitability of the design must also be investigated to ensure adequate strength and stability during 
each construction phase. The deck casting sequence has a significant influence on the distribution of 
stresses within the structure. Therefore, the deck casting sequence should be considered in the design and 
specified on the plans to ensure uniformity between predicted and actual stresses. In addition, lateral 
flange bending stresses resulting from forces applied to the overhang brackets during construction should 
also be considered during the constructability evaluation. 
 
7.4 Extreme Event Limit State (Articles 1.3.2.5 and 6.5.5) 
 
The extreme event limit state is to ensure the structure can survive a collision, earthquake, or flood. The 
collisions investigated under this limit state include the bridge being struck by a vehicle, vessel, or ice 
flow. This limit state is not addressed by this design example. 
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8.0 SAMPLE CALCULATIONS 

 
This example presents sample calculations for the design of positive and negative bending 
sections of the girders for the strength, fatigue and fracture, and service limit states. In addition, 
calculations evaluating the constructibility of the bridge system are included and the optional 
provisions for moment redistribution are presented. Also presented are the cross-frame design, 
stiffener design, and weld design. The moment and shear envelopes provided in Figs. 8 through 
11 are referenced in the following calculations. 
 
8.1 Section Properties 

 
The section properties for Section 1 and Section 2 are first calculated and will be routinely used 
in the subsequent evaluations of the various code checks. The structural slab thickness is taken as 
the slab thickness minus the integral wearing surface (8 inches) and the modular ratio (n) is taken 
to be 8 inches these calculations. 
 
8.1.1 Section 1 – Positive Bending Region 

 
Section 1 represents the positive bending region and was previously shown in Figure 4. The 
longitudinal reinforcement is neglected in the computation of these section properties. 
 
8.1.1.1 Effective Flange Width (Article 4.6.2.6) 

 
Article 4.6.2.6 of the AASHTO LRFD (5

th
 Edition, 2010) Specifications governs the 

determination of the effective flange width of the concrete slab when designing composite 
sections. 
 
For the interior girders of this example, beff in the positive bending region is determined as one-
half the distance to the adjacent girder one each side of the girder being analyzed. 
 

in. 120.0
2

120
2

120b eff   

 
For the exterior girders of this example, beff in the positive bending region is determined as one-
half the distance to the adjacent girder plus the full overhang width. 

 

in. 102.042
2

120b eff   

 
The exterior girder has both a smaller effective width and a larger live load distribution factor 
than the interior girder therefore moment design of the positive bending region is controlled by 
the exterior girder. 
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8.1.1.2 Elastic Section Properties: Section 1 

 
As discussed above, the section properties considered in the analysis of the girder vary based on 
the loading conditions. Specifically, live loads are applied to the termed the short-term composite 
section, where the modular ratio of 8 is used in the computations. Alternatively, dead loads are 
applied to the long-term composite section. The long-term composite section is considered to be 
comprised of the full steel girder and one-third of the concrete deck to account for the reduction 
in strength that may occur in the deck over time due to creep effects. This is reflected in the 
section property calculations through use of a modular ratio equal to 3 times the typical modular 
ratio (3n), or in this example, 24. The section properties for the short-term and long-term 
composite sections are computed below, in Tables 12 and 13.  Recall that the section properties 
for the steel section (girder alone) were previously computed in for the purpose of determining 
live load distribution factors. 
 

Table 12  Section 1 Short Term Composite (n) Section Properties (Exterior Girder) 

 
 

Table 13  Section 1 Long Term Composite (3n) Section Properties (Exterior Girder) 
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8.1.1.3 Plastic Moment: Section 1 

 
The plastic moment Mp may be determined for sections in positive flexure using the procedure 
outlined in Table D6.1-1 as demonstrated below. The longitudinal deck reinforcement is 
conservatively neglected in these computations. The plastic forces acting in the slab (Ps), 
compression flange (Pc), web (Pw), and tension flange (Pt) are first computed.  
 

Ps = 0.85f’cbsts  = 0.85(4.0)(102)(8)  = 2,611 kips 
 
Pc = Fycbctc   = (50)(14)(0.75)  = 525 kips 
 
Pw = FywDtw  = (50)(42)(0.4375)  = 919 kips 
 
Pt = Fytbttt   = (50)(16)(1.25) = 1,000 kips 

 
The plastic forces for each element of the girder are then compared to determine the location of 
the plastic neutral axis (PNA). The position of the PNA is determined by equilibrium, no net 
axial force when considering the summation of plastic forces. Table D.6.1-1 provides seven 
cases, with accompanying conditions for use, to determine the location of the PNA and 
subsequently calculate the plastic moment.  
 
Following the conditions set forth in Table D6.1-1, the PNA is generally located as follows: 

 
CASE I 

Pt + Pw ≥ Pc + Ps 
 
1,000 + 919 ≥ 525 + 2,611 
 
1,919 < 3,136 Therefore,PNA is not in the web 

 
CASE II 

Pt + Pw + Pc ≥ Ps 
 
1,000 + 919 + 525 ≥ 2,611 
 
2,444 kips < 2,611 kips Therefore,PNA is not in the top flange 

 
Therefore, the plastic neutral axis is in the concrete deck and y  is computed using the following 
equation derived from that provided in Table D6.1-1 when deck reinforcement is ignored: 
 

c w t
s

s

P +P +Py=(t )
P

 
 
 

 

 

  slab  concrete   theof  top thefrom inches 7.49
2611

10009195258.0y 






 
    
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The plastic moment Mp is then calculated using the following equation derived from that 
provided in Table D6.1-1 when deck reinforcement is ignored. 
 

 
2

s
p c c w w t t

s

y PM = + P d +P d +P d
2t

 
 
 
 

 

 
The distance from the PNA to the centroid of the compression flange, web, and tension flange 
(respectively) is as follows: 
 

dc = 8.0 + 2.0 – 0.5(0.75) - 7.49 = 2.135 in. 
 
dw = 8.0 + 2.0 + 0.5(42.0) – 7.49 = 23.51 in. 
 
dt = 8.0 + 2.0 + 42.0 + 0.5(1.25) – 7.49 = 45.135 in. 
 

Substitution of these distances and the above computed plastic forces, into the preceding 
equation, gives the following: 
 

   
 

         135.45100051.23919135.2525
0.82
261149.7M

2

p 













  

 
Mp = 77,016 k-in = 6,418 k-ft. 
 
 

8.1.1.4 Yield Moment: Section 1 

 
The yield moment, which is the moment which causes first yield in either flange (neglecting 
flange lateral bending) is detailed in Article D6.2.2 of the specifications. This computation 
method for the yield moment recognizes that different stages of loading (e.g. composite dead 
load, non-composite dead load, and live load) act on the girder when different cross-sectional 
properties are applicable. The yield moment is determined by solving for MAD using Equation 
D6.2.2-1 (given below) and then summing MD1, MD2, and MAD, where, MD1, MD2, and MAD are 
the factored moments applied to the noncomposite, long-term composite, and short-term 
composite section, respectively. 
 

1 2D D AD
yt

NC LT ST

M M M
F

S S S
    Eq. (D6.2.2-1) 

 
Due to the significantly higher section modulus of the short-term composite section about the top 
flange, compared to the short-term composite section modulus taken about the bottom flange, the 
minimum yield moment results when using the bottom flange section modulus values.  
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Computation of the yield moment for the bottom flange is thus demonstrated below. First the 
known quantities are substituted into Equation D6.2.2-1 to solve for MAD. 
 

         













1,248
M

1,159
121201.50121471.25

887.7
1217381.251.050 AD  

 
MAD = 42,136 k-in. = 3,511 k-ft. 

 
My is then determined by applying the applicable load factors and summing the dead loads and 
MAD. 
 

My = 1.25(738) + 1.25(147) + 1.50(120) + 3,489 = 4,776 k-ft Eq. (D6.2.2-2) 
 

8.1.2 Section 2 – Negative Bending Region 

 
This section details the calculations to determine the section properties of the composite girder in 
the negative bending region, which was previously illustrated in Figure 7. 
 
8.1.2.1 Effective Flange Width (Article 4.6.2.6) 

 
As discussed previously, the effective flange width for interior girders is computed as one-half 
the distance to the adjacent girder one each side of the girder being analyzed. 
 

in. 120.0
2

120
2

120b eff   

 
For an exterior girder, beff is determined as one-half the distance to the adjacent girder plus the 
full overhang width. 

 

in. 102.042
2

120b eff   

 
8.1.2.2 Minimum Negative Flexure Concrete Deck Reinforcement (Article 6.10.1.7) 

 
The total area of the longitudinal reinforcement, provided in negative bending regions, shall not 
be less than one percent of the total cross-sectional area of the concrete deck. This provision is 
intended to prevent cracking of the concrete deck in regions where the tensile stress due to the 
factored construction load or the service II load exceeds fr, which is typically the case in 
negative bending regions. (fr is the modulus of rupture of the concrete and is equal to 0.24(fr)0.5 
for normal weight concrete, and  is equal to 0.90) 
 
The total area of the concrete deck in this example is computed as follows. 
 

2 2
deck

8 1 1 14/ 2A (37.0) 2 (2.0) 3.5 25.15ft. 3,622in.
12 2 12 12

     
         

     
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The minimum area of reinforcing steel required is taken as: 
 

0.01(3,622) = 36.22 in.2 

 

Reinforcement is to be distributed uniformly across the deck width. The area of reinforcement 
required within the effective width (102 inches) of an exterior girder is determined as shown 
below. 
 

2
2 236.22in =0.98in /ft.=0.816in /ft.

37.0ft
 

 
0.0816(102) = 8.32 in.2 

 

This reinforcement is to be placed in two layers with two-thirds of the reinforcement in the top 
layer and the remaining one-third placed in the bottom layer. Therefore, the area of the top 
reinforcement is 5.55 in2 and the area of the bottom reinforcement is 2.77 in2. Additionally, the 
reinforcement should not use bar sizes exceeding No. 6 bars, have a yield strength greater than 
60 ksi, or use bar spacing exceeding 12.0 inches.  
 
8.1.2.3 Elastic Section Properties: Section 2 

 
Similar to the computation of section properties presented above for Section 1, section properties 
for the short-term and long-term composite sections in Section 2 are presented below. The 
section consisting of the girder and reinforcing steel only is included in the composite section, in 
regions of negative bending, as it is assumed that the concrete is not effective in tension.  
 

Table 14  Section 2 Short Term Composite (n) Section Properties 
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Table 15  Section 2 Long Term Composite (3n) Section Properties 

 
 

Table 16  Section 2 Steel Section and Longitudinal Reinforcement Section Properties 

 
 
The design section modulus at the top of the composite section shall be calculated relative the 
first element to yield, either the top flange or the reinforcing steel. Using the computed distances 
from the neutral axis to each element it is determined that the reinforcing steel is the first to 
yield, as demonstrated below: 
 

x / 26.94 = 50 / 20.07 
 
x = 67.2 ksi > Fyr = 60 ksi 
 

Therefore, the reinforcing steel yields first. 
 

SREIN.= 25,706 / 26.94 = 954.2 in.3  (Controls) 
 
SBOT OF STEEL = 25,706 / 24.31 = 1,057 in.3 
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8.1.2.4 Plastic Moment: Section 2 

Similar to the calculation of the plastic moment for Section 1, Table D6.1-2 is used to determine 
the plastic moment (Mp) for the negative bending section as demonstrated below. The concrete 
slab is assumed to crack and is neglected in the computation of Mp. The plastic force acting in 
each element of the girder is first computed. 

Pc = Fycbctc  = (50)(16)(1.25)  = 1,000 kips 

Pw = FywDtw = (50)(42)(0.50)  = 1,050 kips 

Pt  = Fytbttt  = (50)(14)(1.125) = 788 kips 

Prb = FyrbArb = (60)(2.77)  = 166 kips 

Prt = FyrtArt = (60)(5.55)  = 333 kips 

The plastic forces in each element are used to determine the general location of the plastic 
neutral axis as follows: 

CASE I 

Pc + Pw ≥ Pt + Prb + Prt 

1,000 + 1,050 ≥ 788 + 166 + 333 

2,050 ≥ 1,287 Therefore, the plastic neutral axis is in the web. 

The location of plastic neutral axis ( y  ) is determined by the following equation: 

c t rt rb

w

P -P -P -PDy= 1
2 P

  
  

   
 

in. 15.261
1050

1663337881000
2
42y 



















  

The plastic moment (Mp) is then computed as follows: 

   
22

2p rt rt rb rb t t c c

P
M y D y P d P d Pd P d

D

       
  

  

where: drt =  15.26 + 2 + 8.0 – 2.25 = 23.01 in. 

 drb =  15.26 + 2 + 1.25 = 18.51 in. 

 dt  =  15.26 + 1.125/2 = 15.82 in. 
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 dc  =  42.0 – 15.26 + 1.25/2 = 27.37 in. 

 
                 27.37100015.8278818.5115223.01305.26510.4215.26

42.02
1,050M 22

p 







  

 Mp = 61,515 k-in. = 5,126 k-ft. 

8.1.2.5 Yield Moment: Section 2 

The process for determining the yield moment of the negative bending section is similar to the 
process for the positive bending section. The one difference, though, is that since the composite 
short-term and the composite long-term bending sections are both composed of the steel section 
and the reinforcing steel only, the section modulus is the same for both the short-term and long-
term composite sections. 

The yield moment is the lesser of the moment which causes first yielding of the section, either 
yielding in the bottom flange or yielding in the steel reinforcing. Because, for the negative 
bending region it is not clear which yield moment value will control, the moments causing first 
yield in both compression and tension are computed. 

The moment causing yielding in compression flange is first computed based on Equation D6.2.2-
1. 

1 2D D AD
yf

NC LT ST

M M M
F

S S S
    Eq. (D6.2.2-1) 

        













1,057
M

1,057
122171.50122651.25

958.6
121,3341.251.050 AD  

MAD = 22,905 k-in. = 1,909 k-ft 

Myc = (1.25)(1,334) + (1.25)(265) + (1.50)(217) + 1,909 = 4,233 k-ft 

Similarly, the moment which causes yielding in tension (in the steel reinforcing) is computed as 
follows: 

        











 549

954
122171.50122651.25

825.6
121,3341.251.050  

MAD = 16,697 k-in. = 1,391 k-ft 

Myt = (1.25)(1,334) + (1.25)(265) + (1.50)(217) + 1,391 = 3,715 k-ft 

My = 3,715 k-ft. (governs) 
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8.2 Exterior Girder Check: Section 2 

This design example illustrates the use of the optional moment redistribution procedures, where 
moment is redistributed from the negative bending region to the positive bending region; 
therefore the negative bending region will be checked first in order to determine the amount of 
moment that must be redistributed to the positive bending region.  

8.2.1 Strength Limit State (Article 6.10.6) 

8.2.1.1 Flexure (Appendix A) 

For sections in negative flexure, the flexural capacity of the member can be determined for 
general steel I-girders using Article 6.10.8, which limits the maximum capacity to the yield 
moment of the section. Alternatively, Appendix A permits girder capacities up to Mp and may be 
used for girders: having a yield strength less than or equal to 70 ksi, with a compact or non-
compact web (which is defined by Eq. A6.1-1), and satisfying Eq. A6.1-2 (given below). The 
applicability of Appendix A for this design example is evaluated below. 

The first requirement that the nominal yield strength must be less than 70 ksi is easily evaluated. 

Fyf = 50 ksi ≤ 70 ksi (satisfied) 

The web slenderness requirement is evaluated using Eq. A6.1-1. 

2 5.7c

W YC

D E

t F
  Eq. (A6.1-1) 

As computed above the elastic neutral axis is located 24.31 inches from the bottom of the 
composite negative bending section. Subtracting the bottom flange thickness gives the web depth 
in compression in the elastic range (Dc) as computed below. 

Dc = 24.31 – 1.25 = 23.06 in. 

Substituting the applicable values into Eq. A6.1-1 shows that the equation is satisfied. 

 
50
000,297.5

5.0
06.232

  

92.24 < 137.27  (satisfied) 

Equation A6.1-2 prevents the use of extremely mono-symmetric girders, which analytical studies 
indicate have significantly reduced torsional rigidity. 

0.3yc

yt

I

I
  Eq. (A6.1-2) 
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3

3

(1/12)(1.25)(16) 1.7 0.3
(1/12)(1.125)(14)

   (satisfied) 

Thus, Appendix A is applicable. 

The strength requirements specified by Appendix A are given in Section A6.1.1. Since the 
compression flange is discretely braced, the flexural capacity of the compression flange must 
exceed the maximum negative moment due to the factored Strength I loading plus one-third of 
the lateral bending stress multiplied by the section modulus for the compression flange, see Eq. 
A6.1.1-1.  

1
3u l xc f ncM f S M   Eq. (A6.1.1-1) 

However, because the lateral bending forces are zero at the Strength I limit state for the straight 
girders considered in this example, the left side of the equation reduces to only the maximum 
moment. Similarly, the tensile moment capacity must also be greater than the maximum factored 
loading.  

u f ntM M  

Use of Appendix A begins with the computation of the web plastification factors, as detailed in 
Article A6.2 and calculated below. If the section has a web which satisfies the compact web 
slenderness limit of Eq. A6.2.1-1, the section can reach Mp provided the flange slenderness and 
lateral torsional bracing requirements are satisfied.  

( )

2
CP

cp

PW D

W

D

t
 , Eq. (A6.2.1-1) 

where: ( ) 2

0.54 - 0.1
CP

yc cp

pw D rw

c
p

h y

E

F D

DM

R M

 
 

   
   
  
 

 Eq. (A6.2.1-2) 

The web depth in compression at Mp is computed by subtracting the previously determined 
distance between the top of the web and the plastic neutral axis from the total web depth. 

Dcp = 42.0 – 15.26 = 26.74 in. 

The hybrid factor, Rh, is determined from Article 6.10.1.10.1, and is 1.0 for this example since 
the design has a homogeneous material configuration. Therefore, pw is computed as follows. 
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   

1.183
06.23
74.2687.157

09.0
1237150.1

6151654.0

50
29000

2)D(pw cp















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




  

pw(Dcp) = 56.11 < 183.1 (satisfied) 

The web slenderness classification is then determined as follows. 

    11.560.107
5.0
74.262

t
D2

)D(pw
w

cp
c
  (not compact) 

As shown, the section does not qualify as compact. However, it was previously demonstrated, 
when evaluating the Appendix A applicability, that the web does qualify as non-compact. 
Therefore, the applicable web plastification factors are specified by Eqs. A6.2.2-4 and A6.2.2-5 
and are calculated as follows. 

( )

( )

1 1 C

C

w pw Dh yc p p

pc

p rw pw D yc yc

R M M M
R

M M M

 

 

    
      

      

 Eq. (A6.2.2-4) 

where: )D(pw c
 = limiting slenderness ratio for a compact web corresponding to 2Dc/tw 

  87.15739.48
74.26
06.2311.56

D
D

rw
cp

c
)D(pw)D(pw cpc
























   Eq. (A6.2.2-6) 

   
     124233

61515
124233

515,61
39.4827.137
39.4824.92

61515
1242330.111R pc 




























  

Rpc = 1.107 ≤ 1.211 = 1.107 

( )

( )

1 1 C

C

w pw Dh yt p p

pc

p rw pw D yt yt

R M M M
R

M M M

 

 

    
      

      

 Eq. (A6.2.2-5) 

   
     123715

61515
123715

515,61
39.4827.137
39.4824.92

61515
1237150.111R pt 




























  

Rpt = 1.192 ≤ 1.380 = 1.192 

The flexural resistance based on the compression flange is determined from Article A6.3 and is 
taken as the minimum of the local buckling resistance from Article A6.3.2 and the lateral 
torsional buckling resistance from Article A6.3.3.  
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To evaluate the local buckling resistance, the flange slenderness classification is first determined, 
where the flange is considered compact if the following equation is satisfied.  

pff λλ    

where: 
2

fc

f

fc

b

t
   Eq. (A6.3.2-3) 

 0.38pf

yc

E

f
   Eq. (A6.3.2-4) 

0.38
2

fc

f pf

fc yc

b E

t F
     

16.0 29,0000.38
2(1.25) 50f pf     

f pfλ =6.40 λ 9.15   (satisfied)  

Therefore, the compression flange is considered compact, and the flexural capacity based on 
local buckling of the compression flange is governed by Eq. A6.3.2-1. 

Mnc = Rpc Myc = (1.107)(4,233) = 4,686 k-ft Eq. (A6.3.2-1) 

Similarly, to evaluate the compressive flexural resistance based on lateral-torsional buckling, the 
lateral bracing distance must be first classified. Lateral bracing distances satisfying the following 
equation are classified as compact. 

b pL L  

where: Lb= (10.0)(12) = 120 ft 

p t
yc

E120' L r
F

   Eq. (A6.3.3-4) 

where: rt = effective radius of gyration for lateral torsional buckling (in.) 

rt = 16.0

1 (22.79)(0.5)1 12 112 1 3 (16.0)(1.25)3

fc

c w

fc fc

b

D t

b t


   

       

 Eq. (A6.3.3-10) 

rt = 4.234 in. 
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b p
29,000L L 4.234 102.0

50
     (not compact) 

Because the lateral bracing distance does not satisfy the compact limit, the non-compact limit is 
next evaluated. 

Lp < Lb ≤ Lr 

where: Lr  = limiting unbraced length to achieve the nominal onset of yielding in either 
flange under uniform bending with consideration of compression flange 
residual stress effects (in.) 

Lr = 

2

1.95 1 1 6.76 yr xc

t

yr xc

F S hE J
r

F S h EJ

 
   

 
 Eq. (A6.3.3-5) 

Fyr = smaller of the compression flange stress at the nominal onset of yielding of 
either flange, with consideration of compression-flange residual stress 
effects but without consideration of flange lateral bending, or the specified 
minimum yield strength of the web 

Fyr = xt
yc h yt yw

xc

Smin 0.7F ,R F ,F
S

 
 
 

 Eq. (A6.3.3-9) 

Sxt = (3715) (12) / 50 = 891.6 in.3 

Sxx = (4233) (12) / 50 = 10166 in.3 

Fyr =      






 50,
1016

6.891500.1,507.0min  

Fyr = min(35,43.9, 50) 

Fyr = 0.35 ksi > 0.5 Fyc = 25ksi (satisfied) 

J = St. Venant torsional constant  

J = 





































ft

ft
ftft

fc

fc3
fcfc

3
w b

t63.01tb
b
t63.01tbDt

3
1  Eq. (A6.3.3-9) 

J =     3 3 31 (42)(0.5) +(16)(1.25) .95 +(14)(1.125) .95
3

 

J = 17.96 in.3 

h = depth between the centerline of the flanges 



 47 

h = 1.125/2 + 42 + 1.25/2 = 43.19 in. 

Lr =  
  

  
  

2

81.1829000
19.4310163576.611

19.431016
96.17

35
29000234.495.1 








  

Lr = 400.8 in. 

LB = 120 ≤ Lr = 400.8 (satisfied) 

Therefore, the lateral bracing distance is classified as non-compact and the lateral torsional 
buckling resistance is controlled by Eq. A6.3.3-2 of the Specifications.  

-
1- 1-

-
yr xc b p

nc b pc yc pc yc

pc yc r p

F S L L
M C R M R M

R M L L

   
    

  
    

 Eq. (A6.3.3-2) 

where: Cb =  moment gradient modifier 

The moment gradient modifier is discussed in Article A6.3.3 and is calculated in the following 
manner. 

2

1 1
b

2 2

M MC =1.75-1.05 +0.3 2.3
M M

   
   

   
 Eq. (A6.3.3-7) 

where: M1 = Mo when the variation in moment between brace points in concave and 
otherwise 

M1 = 2Mmid – M2 ≥ M0 

Mmid  = major-axis bending moment at the middle of the unbraced length  

M0 = moment at the brace point opposite to the one corresponding to M2 

M2 = largest major-axis bending moment at either end of the unbraced length 
causing compression in the flange under consideration 

For the critical moment location at the interior pier, the variation in moment is concave 
throughout the unbraced length and the applicable moment values are as follows. 

M2 = 5,365 k-ft. 

M0 = 2,999 k-ft. 

M1 = M0 = 2,999 k-ft Eq. (A6.3.3-11) 

2

b
2,999 2,999C =1.75-1.05 +0.3 1.26 2.3
5,365 5,365

   
    

   
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Cb = 1.26 

Therefore, Mnc is equal to the following. 

 
  

   
  )1.107(4233(4233)1.107

201400.8
016,1201

12(4233)1.107
101635.01126.1Mnc 




























  

Mnc = 5,773 ≤ 4,686 

Mnc = 4,686 k-ft 

As previously stated, the flexural capacity based on the compression flange is the minimum of 
the local buckling resistance and the lateral torsional buckling resistance, which in this design 
example are equal. 

Mnc = 4,686 k-ft 

Multiplying the nominal moment capacity by the applicable resistance factor gives the following. 

fMnc = (1.0)(4,686) 

fMnc = 4,686 k-ft. 

Comparing this moment resistance to the Strength I factored moment at the pier shows that the 
factored moment is greater than the moment resistance. Thus, moment redistribution may be 
considered. 

Mu = 5,365 > fMnc = 4,695 k-ft 

The moment capacity is also evaluated in terms of the tensile moment capacity. For a 
continuously braced tension flange at the strength limit state, the section must satisfy the 
requirements of Article A6.1.4. 

Mu ≤ fRptMyt Eq. (A6.1.4-1) 

f Mnt = fRptMyt  

f Mnt = (1.0)(1.192)(37.15)  

f Mnt =4,428 k-ft 

Not only is this moment capacity less than the applied Strength I factored moment of 5,365 k-ft, 
it is also less than the moment capacity determined based on the resistance of the section in 
compression. Thus, the tensile moment capacity will govern the moment resistance for the 
negative bending region of the girder. 

fMnt = 4,428 k-ft. < Mu = 5,365 k-ft. 
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fMnt = 4,428 k-ft. < Mnc = 4,686 k-ft. 

fMn = 4,428 k-ft. 

8.2.1.2 Moment Redistribution (Appendix B, Sections B6.1 – B6.5) 

Article B6.2 defines the applicability of the Appendix B provisions. Specifically the sections 
must be straight continuous span I-sections that are not skewed more than 10 degrees and do not 
have staggered cross-frames. The specified minimum yield strength of the section must not 
exceed 70 ksi. In addition, the section must satisfy web proportions (Article B6.2.1), 
compression flange proportions (Article B6.2.2), section transition (Article B6.2.3), compression 
flange bracing (Article B6.2.4), and shear (Article B6.2.5) requirements, which are discussed 
below. 

8.2.1.2.1 Web Proportions 

Equations B6.2.1-1, B6.2.1-2, and B6.2.1-3 specify the web proportion limits that must be 
satisfied. 

150
w

D

t
  Eq. (B6.2.1-1) 

42.0 84.0 150
0.5w

D

t
    (satisfied) 

ycw

c

F
E8.6

t
D2

  Eq. (B6.2.1-2) 

  8.163
50
000,298.624.92

50.0
06.232

  (satisfied) 

Dcp ≤ 0.75D Eq. (B6.2.1-3) 

Dcp = 26.74 ≤ 0.75(42.0) = 31.50 (satisfied) 

8.2.1.2.2 Compression Flange Proportions 

Section B6.2.2 requires that the following two compression flange proportion limits must be 
satisfied. 

0.38
2

fc

fc yc

b E

t F
   Eq. (B6.2.2-1) 

15.9
50
000,2938.040.6

)25.1(2
16

  (satisfied) 



 50 

4.25fc

D
b   Eq. (B6.2.2-2) 

fc
42b =16.0 =9.88

4.25
  (satisfied) 

8.2.1.2.3 Compression Flange Bracing Distance 

The compression flange bracing distance must satisfy the following: 

1

2

0.1- 0.06 t
b

yc

r EM
L

M F

  
   

  
 Eq. (B6.2.4-1) 

b
2,999 (4.234)(29,000)L =120.0 0.1-0.06 =163.2
5,365 50

  
   

  
 (satisfied) 

8.2.1.2.4 Shear 

Additionally, the applied shear under the Strength I loading must be less than the shear buckling 
resistance of the girder as specified by the following:  

v crV V  Eq. (B6.2.5-1) 

where: Vcr = shear buckling resistance (kip)  

 Vcr  = CVp (for unstiffened webs) Eq.(6.10.9.2-1) 

 Vp = plastic shear force (kip)  

 Vp = 0.58 FywDtw Eq. (6.10.9.2-
2) 

 C = ratio of the shear buckling resistance to the 
shear yield strength determined as specified 
in Article 6.10.9.3.2, with the shear buckling 
coefficient, k, taken equal to 5.0 

 

Alternative equations are provided for computing the value of C based on the web slenderness of 
the girder. First the web slenderness is evaluated using the following equation. 

w yw

D Ek1.12
t F

  

42.0 (29,000)(5)=84.0>1.12 =60.31
0.50 50

 (not satisfied) 
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The web slenderness is next evaluated using the following equation. 

yw w yw

Ek D Ek1.12 1.40
F t F

   

yw w yw

Ek D Ek1.12 60.31 84.0 1.40 75.4
F t F

      (not satisfied) 

Thus, the governing equation for computing the ratio C is given by Eq. 6.10.9.3.2-6, which is 
applicable when:  

w yw

D Ek84.0 1.40 75.4
t F

    (satisfied) 

2

1.57

yc

w

Ek
C

FD

t

 
  

 
   
 
 

 Eq. (6.10.9.3.2-6) 

 
 2

1.57C= 2,900 0.645
84.0

  

The shear buckling resistance is then computed as follows. 

cr pV =CV =(0.645)(0.58)(50)(42)(0.5)=392.8 kips  

The shear requirement for Appendix B can then be evaluated. 

crV=337 kips φV =(1.0)(392.8)=392.8 kips  (satisfied) 

The provisions of Article B6.2.1 through B6.2.6 are satisfied for this section. Therefore, 
moments may be redistributed in accordance with Appendix B  

The effective plastic moment, determined from Article B6.5, is a function of the geometry and 
material properties of the section. Furthermore, alternative equations are provided for girders that 
satisfy the requirements for enhanced moment rotation characteristics, i.e., classification as 
ultracompact sections. To be classified as ultracompact, the girder must either (1) contain 
transverse stiffeners at a location less than or equal to one-half the web depth from the pier or (2) 
satisfy the web compactness limit given by Eq. B6.5.1-1. 

2
2.3cp

w yc

D E

t F
  Eq. (B6.5.1-1) 

  4.55
50
000,293.20.107

50.0
74.262

  (not satisfied) 
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Therefore, the section does not satisfy the web compactness limit and because the section uses an 
unstiffened web, the girder does not satisfy the transverse stiffener requirement. Thus, the girder 
is not considered to be ultracompact and the applicable Mpe equation at the strength limit state is 
thus Eq. B6.5.2-2.  

peM = 2.63- 2.3 - 0.35 0.39fc yc fc yc

n n

fc fc fc fc

b F b FD D
M M

t E b t E b

 
  

  

 Eq. (B6.5.2-2) 

44284428
16
42

29000
50

25.1
1639.0

16
4235.0

29000
50

25.1
163.263.2M pe 












  

Mpe = 4,574 ≤ 4,428 = 4,428 k-ft 

The redistribution moment, Mrd, for the strength limit state is taken as the larger of the values 
calculated from Eqs. B6.4.2.1-1 and B6.4.2.1-2.  

1 -
3rd e l xc f peM M f S M   Eq. (B6.4.2.1-1) 

1 -
3rd e l xt f peM M f S M   Eq. (B6.4.2.1-2) 

where: Me = critical elastic moment envelope value at the interior-pier section due to the 
factored loads  

Since the lateral bending stresses are negligible for this example, the previous equations reduce 
to the following equation. 

-rd e f peM M M  

In addition, the redistribution moment is limited to 20 percent of the elastic moment by Eq. 
B6.4.2.1-3. 

rd e0 M 0.2 M        Eq. (B6.4.2.1-3) 

Therefore, the redistribution moment is computed as follows, which is shown to satisfy the 20% 
limit. 

Mrd = |Me| - fMpe = 5,365 - (1.0)(4,429) 

Mrd = 937 k-ft = 17.5% Me ≤ 20% Me 

Therefore, the negative bending region of the girder satisfies strength requirements when the 
effective plastic moment equations given in Appendix B are used to evaluate girder capacity. 
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8.2.1.3 Moment Redistribution - Refined Method (Appendix B, Section B6.6) 

Article B6.6 of Appendix B contains specifications for computing redistribution moments using 
a direct method of analysis. Using this analysis procedure, the effective plastic moments are 
computed based on the rotation at which the continuity curve intersects the moment-rotation 
curve, as opposed to assuming that this intersection occurs at a plastic rotation of 30 mrads, as 
assumed in the effective plastic moment equations utilized above. 

In cases such as this example, where the effective plastic moment is equal to the nominal 
moment capacity of the negative bending section, there is no advantage to be gained by using the 
refined method. This is because the peak value of the moment-rotation curve is equal to Mn , the 
maximum value of Mpe possible, irrespective of using the effective plastic moment equations 
from Article B6.5 or the refined method of Article B6.6. However, in other cases the use of the 
refined method may lead to higher values of Mpe, further increasing the economic benefits of 
using the moment redistribution procedures. For this reason, use of the refined method for the 
present design is demonstrated below.  

The first step in using the refined method for moment redistribution is to determine the moment-
rotation curve for the negative bending section. This is done using Figure B6.6.2-1 from the 
AASHTO LRFD (5

th
 Edition, 2010) Specifications, which is reproduced in Figure 12. From 

Figure 12 it is observed that the moment-rotation relationship is a function of the single 
parameter, RL, which is the rotation at which the moment begins to decrease below the nominal 
moment capacity. Similar to the equations for Mpe given for the simplified method introduced 
above, alternative equations for RL are given based on whether the negative bending section 
satisfies the criteria for enhanced moment rotation characteristics given by Section B6.5. It has 
been shown above that the negative bending section does not satisfy either of the requirements 
for sections with enhanced moment-rotation performance. Thus, RL is given in radians by Eq. 
B6.6.2-2. 

 

 

Figure 12  AASHTO LRFD Moment-Rotation Model 
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yc ycfc fc
RL

fc fc fc fc

F Fb bD D0.128 0.143 0.0216 0.0241
t E b t b E

      Eq. (B6.6.2-2) 

Substituting the applicable values into Eq. B6.6.2-2 gives the following. 

16 50 42 16(42) 500.128 0.143 0.0216 0.0241 0.079
1.25 29000 16 0.5(16) 29000RL       

Thus, RL is equal to 0.079 radians or 79 mrads. Recalling that the nominal moment capacity of 
the negative moment section of this girder is 4428 ft-kips, the predicted moment-rotation 
relationship of the example girder is as illustrated in Figure 13. 

 
Figure 13  Determination of Mpe Using Refined Method 

 
In addition to the moment-rotation relationship, the continuity relationship must also be 
determined. The continuity relationship is a linear relationship between the elastic moment at the 
pier (where no plastic rotation occurs) and the rotation assuming no continuity at the pier. The 
elastic moment at the pier has previously been determined to equal 5365 ft-kips, which is the y-
intercept for the continuity relationship. To determine the x-intercept of the continuity 
relationship, the beam is analyzed assuming that a hinge exists at each pier, and rotations due to 
applied moments equal to the elastic moment are computed as shown in Figure 14. In this 
analysis, the AASHTO LRFD (5

th
 Edition, 2010) Specifications stipulate that the section 

properties of the short-term composite section shall be used. Thus, the applicable moment of 
inertia of the positive bending section is 48,806 in4 and the moment of inertia value used for the 
negative bending section is 50,027 in4. From basic structural analysis, or the use of structural 
analysis software, the rotation at the pier for the situation depicted in Figure 14 is then 32.88 
mrads, which is the x-intercept for the continuity relationship. Based on the x- and y- intercepts 
of the continuity relationship, the continuity equation is thus expressed as  

M = 5365 ft-kips – 163.17 ft-kips * p 
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Figure 14  Determination of Rotation at Pier Assuming No Continuity 

 
The moment at the intersection of the continuity relationship and the moment-rotation 
relationship is the effective plastic moment. From Figure 13 it is illustrated that this moment is 
equal to the nominal moment capacity of 4428 ft-kips. The effective plastic moment can also be 
determined mathematically by iteratively selecting p values to be substituted into both the 
moment-rotation and continuity curves until the moment converges. Alternatively, for the 
present girder it is known that the moment is equal to Mn for p values between 5 and 79 mrads. 
Solving the continuity equation for the value of p at Mn gives a rotation of: 

p = (5365 – 4428) / 163.17 = 5.7 mrads. 

Since this value is between 5 and 79 mrads, it is mathematically determined that the effective 
plastic moment is equal to Mn. Once Mpe is determined, the moment redistribution analysis 
proceeds in the same manner used in the simplified method outlined above, where the 
redistribution moments are computed as the difference between the elastic and the effective 
plastic moments as specified in Sections B6.3 and B6.4 and the girder is determined to satisfy 
strength requirements if the redistribution moment is less than 20% of the elastic moment. 

8.2.1.4 Shear (6.10.6.3) 

As computed above the shear resistance of the negative bending region is governed by Article 
6.10.9.2 because the girder is comprised of an unstiffened web, i.e., no transverse stiffeners are 
provided. The shear resistance of the section was previously calculated to be: 

n pV =V=CV =392.8kips  Eq. (6.10.9.2-1) 

The applied shear at the pier at the strength limit state is 337 kips, thus the shear requirements 
are satisfied.  

V crV=337kips φ V =(1.0)(392.8)=392.8kips  (satisfied) 

8.2.2 Constructibility (Article 6.10.3) 

Article 2.5. requires the engineer to design bridge systems such that the construction is not 
difficult or results in unacceptable locked-in forces. In addition, Article 6.10.3 states the main 
load-carrying members are not permitted to experience nominal yielding, or reliance on post-
buckling resistance during the construction phases. The sections must satisfy the requirements of 
Article 6.10.3 at each construction stage. The applied loads to be considered are specified in 
Table 3.4.1-1 and the applicable load factors are provided in Article 3.4.2.  
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The girders are considered to be non-composite during the initial construction phase. The 
influence of various segments of the girder becoming composite at various stages of the deck 
casting sequence is then considered. The effects of forces from deck overhang brackets acting on 
the fascia girders are to be included in the constructibility check.  

8.2.2.1 Deck Placement Analysis  

Temporary moments the noncomposite girders experience during the casting of the deck can be 
significantly higher than those which may be calculated based on the final conditions of the 
system. An analysis of the moments during each casting sequence must be conducted to 
determine the maximum moments in the structure. The potential for uplift should also be 
investigated if the casting of the two end pours does not occur simultaneously.  

Figure 15 depicts the casting sequence assumed in this design example. As required in Article 
6.10.3.4, the loads are applied to the appropriate composite sections during each casting 
sequence. For example, it is assumed during Cast One that all sections of the girder are non-
composite. Similarly, the dead load moments due to the steel components are also based on the 
non-composite section properties. However, to determine the distribution of moments due to 
Cast Two, the short-term composite section properties are used in the regions of the girders that 
were previously cast in Cast One, while the non-composite section properties are used in the 
region of the girder where concrete is cast in Cast Two. The moments used in the evaluation of 
the constructability requirements are then taken as the maximum moments that occur during any 
stage of construction, i.e., the sum of the moments due to the steel dead load and the first casting 
phase or the sum of the moments due to the steel dead load and both casting phases. 
Additionally, while not required, the dead load moment resulting from applying all dead load to 
the short-term composite section (DC1) is also considered. 

 
Figure 15  Deck Placement Sequence 

 
The results of the deck placement analysis are shown in Table 17 where the maximum dead load 
moments in the positive and negative bending regions are indicated by bold text. Note that the 
maximum positive bending moment during construction occurs during Cast 2, and that the 
maximum negative bending moment occurs when it is assumed that the loads are simultaneously 
applied to the composite section. 
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Table 17  Moments from Deck Placement Analysis (kip-ft) 

 

Article 6.10.1.6 states that when checking the flexural resistance based on lateral torsional 
buckling fbu is the largest compressive stress in the flange under consideration, without 
consideration of flange lateral bending, throughout the unbraced length. When checking the 
flexural resistance based on yielding, flange local buckling or web bend buckling, fbu is the stress 
at the section under consideration. The maximum factored flexural stresses due to the deck 
casting sequence are calculated below.  The controlling section during the constructibility check 
for Section 2 is at the pier. 

8.2.2.1.1 Strength I 

Top Flange 

bu
1.0(1.25)(1,334)(12)f = =24.24 ksi

825.6
 

Bottom Flange 

bu
1.0(1.25)(-1,334)(12)f = =-20.87 ksi

958.6
 

8.2.2.1.2 Strength IV 

Top Flange 

bu
1.0(1.50)(1,334)(12)f = =29.08 ksi

825.6
 

Bottom Flange 

bu
1.0(1.50)(-1,334)(12)f = =-25.05 ksi

958.6
 

8.2.2.2 Deck Overhang Loads 

The deck overhang bracket configuration assumed in this example is shown in Figure 16. 
Typically the brackets are spaced between 3 and 4 feet, but the assumption is made here that the 
loads are uniformly distributed, except for the finishing machine. Half of the overhang weight is 
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assume to be carried by the exterior girder, and the remaining half is carried by the overhang 
brackets. 

 

Figure 16  Deck Overhang Bracket Loads 

 
The following calculation determines the weight of deck overhang acting on the overhang 
bracket. 

8.5 1 2.0 14/ 2 1.25 14/ 2P 0.5(150) (3.5) 3.5 208.7 lbs/ft
12 12 2 12 12 12
      

          
      

 

The following is a list of typical construction loads assumed to act on the system before the 
concrete slab gains strength. The magnitudes of load listed are those that are applied to only the 
overhang brackets.  

 Overhang Deck Forms: P = 40 lb/ft 

 Screed Rail:   P = 85 lb/ft 

 Railing:   P = 25 lb/ft 

 Walkway:   P = 125 lb/ft 

 Finishing Machine:  P = 3,000 lb 

The weight of the finishing machine is estimated as one-half of the total finishing machine truss 
weight. The lateral force acting on the girder section due to the vertical loading is computed as 
follows. 

F = Ptanα 
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where:  -1 42in.α= tan =45
42in.

 
 
 

 

The equations provided in Article C6.10.3.4 to determine the lateral bending moment can be 
employed in the absence of a more refined method. From the article, the following equation 
determines the lateral bending moment for a uniformly distributed lateral bracket force: 

2

12
l b

l

F L
M   

where: Ml =  lateral bending moment in the top flange due to the eccentric loadings from 
the form brackets 

 Fl =  statically equivalent uniformly distributed lateral force due to the factored 
loads 

The equation which estimates the lateral bending moment due to a concentrated lateral force at 
the middle of the unbraced length is as follows. 

8
l b

l

PL
M   

where: Pl =  statically equivalent concentrated force placed at the middle of  the 
unbraced length 

For simplicity, the largest value of fl within the unbraced length is conservatively used in the 
design checks, i.e., the maximum value of fl within the unbraced length is the assumed stress 
level throughout the unbraced length. The unbraced length for the section under consideration is 
10 feet.  

Article 6.10.1.6 specifies the process for determining the lateral bending stress. The first-order 
lateral bending stress may be used if the following limit is satisfied. 

1.2 b b
b p

bm

yc

C R
L L

f
F

  Eq. (6.10.1.6-2) 

where: Lp =  limiting unbraced length from Article 6.10.8.2.3 of the Specifications 

 Cb =  moment gradient modifier 

 Rb =  web load-shedding factor 

 Fyc =  yield strength of the compression flange 

The moment gradient modifier is discussed in Article A6.3.3 and is calculated in the following 
manner. 
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2

1 1

2 2

1.75 1.05 0.3 2.3b

M M
C

M M

   
      

   
 Eq. (A6.3.3-7) 

where: M1 =  2Mmid – M2 ≥ M0 Eq. (A6.3.3-12) 

 Mmid  = major-axis bending moment at the middle of the 
unbraced length  

 

 M0 =  moment at the brace point opposite to the one 
corresponding to M2 

 

 M2 =  largest major-axis bending moment at either end of 
the unbraced length causing compression in the 
flange under consideration 

 

The following values correspond to the results of the deck placement analysis. 

M2 = 1,334 k-ft. M1 = 2Mmid – M2 ≥M0 

M0 = 668 k-ft. M1 = 2(995) – (1,334) = 656≤ 668 

Mmid = 995 k-ft. M1 = 668 k-ft. 

Thus, Cb is calculated as follows. 

2

b
668 668C =1.75 1.05 0.3 1.30 2.3

1,334 1,334
   

      
   

 

According to Article 6.10.1.10.2, the web load-shedding factor, Rb, is 1.0 when checking 
constructibility. Thus, Eq. 6.10.1.6-2 is evaluated as follows. 

b
(1.30)(1.0)L =120 in. 1.2(103.2) 185.129.08

50
   in. 

Hence, it is shown that the first-order elastic analysis is applicable. 

According to Article 3.4.2, a load factor of 1.5 is applied to construction loads for all strength 
limit states. For other dead loads, a load factor of 1.25 is used for the Strength I load 
combination, while a load factor of 1.5 is used for dead load under the Strength IV load 
combination. Additionally, live load is not considered under the Strength IV load combinations. 
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8.2.2.2.1 Strength I 

The lateral bending forces at the Strength I limit state are computed as follows. 

Dead loads: 

P = [1.25(209) + 1.5(40 + 85 + 25 + 125)] = 673.8 lbs/ft. 

F = Fl = P tan = 673.8 tan (45°) = 673.8 lbs/ft. 

2 2(0.6738)(10) 5.62k-ft
12 12
l b

l

F L
M     

Top Flange: 2

5.62(12) 1.84 ksi
1.125(14) / 6

l
l

l

M
f

S
    

Bottom Flange: 2

5.62(12) 1.26 ksi
1.25(16) / 6

l
l

l

M
f

S
    

Live loads: 

P = [1.5(3,000)] = 4,500 lbs. 

F = Pl = P tan a = 4,500 tan (45°) = 4,500 lbs. 

(4.5)(10) 5.63k-ft
8 8
l b

l

PL
M     

Top Flange: 2

5.63(12) 1.84 ksi
1.125(14) / 6

L
L

L

M
f

S
    

Bottom Flange: 2

5.63(12) 1.26 ksi
1.25(16) / 6

L
L

L

M
f

S
    

Total: 

Top flange: fl = 1.84 + 1.84 = 3.68 ksi 

Bot. flange: fl = 1.26 + 1.26 = 2.52 ksi 
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8.2.2.2.2 Strength IV 

The computation of the lateral bending forces at the Strength IV limit state is demonstrated 
below.  

Dead loads: 

P = [1.5(209 + 40 + 85 + 25 + 125)] = 726.0 lbs/ft. 

F = Fl = P tan = 726.0 tan (45°) = 726.0 lbs/ft. 

2 2(0.7260)(10) 6.05k-ft
12 12
l b

l

F L
M     

Top Flange: 2

6.05(12) 1.98 ksi
1.125(14) / 6

l
l

l

M
f

S
    

Bottom Flange: 2

6.05(12) 1.36 ksi
1.25(14) / 6

l
l

l

M
f

S
    

Live loads: 

Not applicable 

Total: 

Top flange: fl = 1.98 ksi 

Bot. flange: fl = 1.36 ksi 

According to Article 6.10.1.6, the lateral bending stresses must be less than 60 percent of the 
yield stress of the flange under consideration. It is shown above that the lateral bending stresses 
are highest at the pier under the Strength I load combination. Thus, evaluation of Eq. 6.10.1.6-1 
at the Strength I limit state is shown below. 

0.6l yf F  (6.10.1.6-1) 

Top flange: fl = 3.68 ksi < 0.6Fyf = 30 ksi (satisfied) 

Bot. flange: fl = 2.52 ksi < 0.6Fyf = 30 ksi (satisfied) 

8.2.2.3 Flexure (Article 6.10.3.2) 

During construction, both the compression and tension flanges are discretely braced. Therefore, 
Article 6.10.3.2 requires the noncomposite section to satisfy Eqs. 6.10.3.2.1-1, 6.10.3.2.1-2, and 
6.10.3.2.1-3, which ensure the flange stress is limited to the yield stress, the section has sufficient 
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strength under the lateral torsional and flange local buckling limit states, and web bend buckling 
does not occur during construction, respectively.  

8.2.2.3.1 Compression Flange: 

Flange nominal yielding: The allowable stress in the compression flange is limited to the 
nominal yield strength of the flange multiplied by the hybrid 
factor. 

Fbu + fl ≤ φfRhFyc (6.10.3.2.1-1) 

Since the section under considerations has a homogeneous material configuration, the hybrid 
factor is 1.0, as stated in Article 6.10.1.10.1. Thus, Eq. 6.10.3.2.1-1 is evaluated as follows. 

25.05 1.36 (1.0)(1.0)(50)   

26.41ksi 50 ksi  (satisfied) 

Flexural Resistance: The flexural resistance of the noncomposite section is required to be 
greater than the maximum bending moment as a result of the deck 
casting sequence plus one third of the lateral bending stresses, as 
expressed by:  

1
3bu l f ncf f F   Eq. (6.10.3.2.1-2) 

According to Article 6.10.3.2.1, the flexural resistance, Fnc, is determined as specified in Article 
6.10.8.2 or Article A6.3.3, if applicable. Two requirements provided in Article A6.1 must be 
satisfied for Article A6.3.3 to be applicable. 

yfF 50ksi 70ksi   (satisfied) 

2 5.7c

w yc

D E

t F
  Eq. (A6.1-1) 

Dc = 20.62 – 1.25 = 19.37 in. 

2(19.37) (29,000)5.7
(0.5) (50)

  

77.48 < 137.27  (satisfied)  

Therefore, Appendix A is applicable. 

The sections for which Appendix A is applicable have either compact or noncompact web 
sections where the web classification dictates the equations used to determine the moment 
capacity. The section qualifies as a compact web section if Eq. A6.2.1-1 is satisfied.  
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( )

2
CP

cp

pw D

w

D

t
  Eq. (A6.2.1-1) 

where: Dcp = depth of web in compression at the plastic moment  

 Rh = hybrid factor 

 pw(Dcp)  = limiting slenderness ratio for a compact web corresponding to 2Dcp/tw 

2

0.54 0.1

yc

p

h y

E

F

M

R M


 

  
 

 Eq. (A6.2.1-2) 

The location of the plastic neutral axis of the steel section must be determined to calculate the 
depth of web in compression. The equations from Appendix D are employed for this purpose.  

Pc = (16)(1.25)(50)  = 1,000 kips 

Pt = (14)(1.125)(50) = 788 kips 

Pw = (42)(0.5)(50) = 1,050 kips 

Pc + Pw = 1,000 + 1,050 kips = 2,050 ≥ Pt =788 kips 

Therefore, the location of the plastic neutral axis is in the web (Table D6.1-2, Case I) and the 
precise location is computed as follows. 

42 1,000 7881 1 25.24in.
2 2 1,050

c t

w

P PD
y

P

      
          
      

 

The plastic neutral axis is located 25.24 inches below the bottom of the top flange. The plastic 
moment can be determined from the following equation: 

 
22

2
w

p t t c c

P
M y D y Pd P d

D

     
  

 

 
221,050 (25.24) 42 25.24 (788)(25.24 1.125/ 2) (1,000)(42 25.24 1.25/ 2)

2(42)pM         
 

 
Mp = 49,192 kip-in = 4,099 kip-ft 

From the above calculations, the depth of web in compression can be calculated. 

Dcp = 42.0 – 25.24 = 16.76 in. 
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Furthermore, the web slenderness is now evaluated. 

( ) 2

29,000
50 81.53

49,1920.54 0.1
(1.0)(50)(825.6)

cppw D  
 

 
 

 

( )

2 2(16.76) 67.04 81.53
0.5 cp

cp

pw D

w

D

t
     (satisfied) 

Therefore, the section qualifies as a compact web section, and the web plastification factors are 
determined from Eqs. A6.2.1-4 and A6.2.1-5, where Myc and Myt are the yield moments with 
respect to the compression and tension flanges, respectively. 

49,192 1.026
(50)(958.6)

p

pc

yc

M
R

M
    Eq. (A6.2.1-4) 

49,192 1.192
(50)(825.6)

p

pt

yt

M
R

M
    Eq. (A6.2.1-5) 

As previously discussed, the lateral torsional buckling resistance is provided in Article A6.3.3. If 
the following equation is satisfied the lateral brace spacing is classified as compact. 

Lb ≤ Lp 

where: Lb = unbraced length (in.) 

 Lp = limiting unbraced length to achieve the nominal flexural resistance 
RpcMyc under uniform bending (in.) 

   t

yc

E
r

F
      Eq. (A6.3.3-4) 

 rt = effective radius of gyration for lateral torsional buckling (in.) 

16 4.286in.
1 (19.37)(0.5)1 12 112 1 3 (16)(1.25)3

fc

t

c w

fc fc

b
r

D t

b t

  
   

       

 Eq. (A6.3.3-10) 

(10.0)(12) 120 in. 103.2 in.b p t

yc

E
L L r

F
      

Therefore, the unbraced spacing is not compact, and the following inequality is evaluated to 
determine if the unbraced distance is classified as non-compact. 
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Lb ≤ Lr 

where: Lr = limiting unbraced length to achieve the nominal onset of yielding in 
either flange under uniform bending (in.) with consideration of 
compression flange residual stresses 

  = 
2

1.95 1 1 6.76 yr xc

t

yr xc

F S hE J
r

F S h EJ

 
   

 
   Eq. (A6.3.3-5) 

 
229,000 17.96 35 (958.6)(43.19)1.95(4.286) 1 1 6.76 407.4in.

35 (958.6)(43.19) 29,000 18.81
 

   
 

 

 Fyr = smaller of the compression flange stress at the nominal onset of 
yielding of either flange, with consideration of compression flange 
residual stress effects but without consideration of flange lateral 
bending, or the specified minimum yield strength of the web. 

  = min 0.7 , ,xt
yc h yt yw

xc

S
F R F F

S

 
 
 

 

  =  825.6min 0.7(50),(1.0)(50) ,50 35.0ksi
958.6

 
 

 
 

 J = St. Venant torsional constant 

  = 





































ft

ft
ftft

fc

fc3
fcfc

3
w b

t63.01tb
b
t63.01tbDt

3
1  Eq.(A6.3.3-9) 

 h = depth between the centerline of the flanges  = 43.19 in. 

b rL 120 in. L 407.4 in.     

Therefore, the section has a noncompact unbraced length, and the lateral torsional buckling 
resistance is controlled by equation A6.3.3-2 of the specifications. 

1 1 yr xc b p

nc b pc yc pc yc

pc yc r p

F S L L
M C R M R M

R M L L

   
      

      

 Eq.(A6.3.3-2) 

(35)(958.6) 120 103.2(1.30) 1 1 (1.026)(50)(958.6)
(1.026)(50)(958.6) 416.9 103.2nc pc ycM R M

    
      

     

Mnc = 62,841 ≤ 49,176 = 49,176 k-in = 4,098 k-ft 
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Article 6.10.3.2.1 prescribes that the nominal flexural resistance, Fnc, can be taken as the Mnc 
determined from Article A6.3.3 divided by Sxc. 

Fnc = 4,098(12) 51.3 ksi
958.6

  

Equation 6.10.3.2.1-2 may now be evaluated as follows. 

1 125.05 (1.36) (1.0)(51.3)
3 3bu l f ncf f F      Eq. (6.10.3.2.1-2) 

25.50 ksi 51.3 ksi  (satisfied) 

Thus, the moment capacity of the non-composite section is sufficient to resist the applicable 
construction loading. 

Web Bend Buckling: The flange stresses due to the construction loads are limited to a 
maximum of the web bend buckling stress by: 

   bu f crwf F       Eq. (6.10.3.2.1-3) 

The nominal elastic bend-buckling resistance for web, Fcrw, is determined according to Article 
6.10.1.9 of the Specifications. 

2

0.9
crw

w

Ek
F

D
t


 
 
 

 Eq. (6.10.1.9.1-1) 

where: k = bend buckling coefficient 

  = 
 

2

9

cD D
       Eq. (6.10.1.9.1-2) 

From previous calculations: Dc = 19.37 in. 

Therefore, 
 

2

9 42.31
19.37 / 42.0

k    

2

0.9(29,000)(42.31) 156.5ksi 50ksi
42

0.50

crw n ycF R F   
 
 
 

 

25.05 ksi (1.0)(50) 50 ksibu f crwf F     (satisfied) 
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8.2.2.3.2 Tension Flange: 

Flange Nominal Yielding: For a discretely braced tension flange, the allowable stress in 
the tension flange due to the factored loading must be less than 
the nominal yield strength multiplied by the hybrid factor.  

bu l f h ytf f R F   Eq. (6.10.3.2.2-1) 

29.08 + 1.98 ≤ (1.0)(1.0)(50) 

31.06 ≤ 50 (satisfied) 

8.2.2.4 Shear (Article 6.10.3.3) 

The required shear capacity during construction is specified by Eq. 6.10.3.3-1. Later in this 
design example, the unstiffened shear strength of the girder is demonstrated to be sufficient to 
resist the applied shear under the strength load combination. Therefore, the section will have 
sufficient strength for the constuctibility check. 

u v crV V  Eq. (6.10.3.3-1) 

8.2.3 Service Limit State (Article 6.10.4) 

Plastic deformations are controlled under the service limit state, which is specified in Article 
6.10.4. 

8.2.3.1 Permanent Deformations (Article 6.10.4.2) 

The Service II limit state is intended to prevent permanent deformations that may negatively 
impact the rideability of the structure by limiting the stresses in the section under expected 
severe traffic loadings. Specifically, under the Service II load combination, the top flange of 
composite sections must satisfy: 

ff ≤ 0.95RhFyf Eq. (6.10.4.2.2-1) 

Because the bottom flange is discretely braced (as opposed to the top flange), Eq. 6.10.4.2.2-2 
must be satisfied for the bottom flange of composite sections. 

0.95
2

l
f h yf

f
f R F   Eq. (6.10.4.2.2-2) 

Under the service limit state, the lateral force effects due to wind-load and deck overhang are not 
considered. Therefore, for bridges with straight, non-skewed girders such as the present design 
example the lateral bending forces are zero and Eq. 6.10.4.2.2-2 reduces to Eq. 6.10.4.2.2-1. 

Appendix B permits the redistribution of moment at the service load level before evaluating the 
above equations. Article B6.5.2 specifies the effective plastic moment for the service limit state 
is as follows. 
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2.90 2.3 0.35 0.39fc yc fc yc

pe n n

fc fc fc fc

b F b FD D
M M M

t E b t E b

 
     
  

 Eq. (B6.5.2-1) 

44284428
16
42

29000
50

25.1
1639.0

16
4235.0

29000
50

25.1
163.290.2 












peM  

Mpe = 5,770 k-ft ≤ 4,428 k-ft 

Mpe = 4,428 k-ft > Mu = 4,075 k-ft   Therefore, No redistribution at Service II. 

Because the effective plastic moment is greater than the maximum factored load for the Service 
II load combination, it is assumed that there is no moment redistribution at this limit state. The 
stresses under Service II are computed using the following equation.  

1 2 1.3DC DC DW LL IM
f

nc lt st

M M M M
f

S S S




    

As permitted by Article 6.10.4.2.1, since shear connectors are provided throughout the span 
length, the stresses in the member as a result of the Service II load combination are computed 
assuming the concrete slab is fully effective in both the positive and negative bending region. 
The stress in the compression flange is thus computed as follows. 

         ksi 42.71
1282

121737-3.1
1187

12217-265-
958.6

121334-
ff  

Comparing this stress to the allowable stress shows that Eq. 6.10.4.2.2-1 is satisfied. 

   ksi 47.50500.195.095.0ksi 42.71-  yfhf FRf  (satisfied) 

Similarly, the computation of the stress in the tension flange is computed as follows. 

         ksi 31.24
9333

121737-3.1
2857

12217-265-
825.6

121334-
ff  

Thus, it is also demonstrated that Eq. 6.10.4.2.2-2 is satisfied for the tension flange. 

   ksi 47.50500.195.0FR95.0ksi 24.84f yfhf   (satisfied) 

The compression flange stress at service loads is also limited to the elastic bend-buckling 
resistance of the section by Eq. 6.10.4.2.2 -4. 

c crwf F  Eq. (6.10.4.2.2-4) 

where: fc = compression flange stress at the section under consideration due to the 
Service II loads calculated without consideration of flange lateral bending 
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 Fcrw = nominal elastic bend buckling resistance for webs with or without 
longitudinal stiffeners, as applicable, determined as specified in Article 
6.10.1.9 

From Article 6.10.1.9, the bend-buckling resistance for the web is determined using the 
following equation. 























0.7
F

 ,FRmin

t
D

0.9EkF yw
ych2

w

crw  Eq. (6.10.1.9.1-1) 

where: k = bend-buckling coefficient
 

2

9
/cD D

  Eq. (6.10.1.9.1-2) 

The depth of web in compression is calculated using the method described in Article D6.3.1, 
which states Eq. D6.3.1-1 is to be used when checking composite sections in negative flexure at 
the service limit state. 

0c
c fc

c t

f
D d t

f f

 
   

  
 Eq. (D6.3.1-1) 

where: ft = the sum of the various tension-flange stresses caused by the different loads 
(ksi) 

 d = depth of steel section (in.) 

42.84 44.375 1.25 0
42.84 24.84cD
 

    
 

26.84 0 26.84in.cD     

Therefore, k and Fcrw are computed as follows. 

 
2

9 22.04
26.84/ 42.0

k    

ksi50F Rksi81.53

0.50
42

)(22.04)0.9(29,000F ych2crw 









  

It can then be demonstrated that Eq. 6.10.4.2.2-4 is satisfied as shown below. 

ksi 50ksi 42.71-  crwc Ff  (satisfied) 
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8.2.4 Fatigue and Fracture Limit State (Article 6.10.5) 

The fatigue and fracture limit state incorporates three distinctive checks: fatigue resistance of 
details (Article 6.10.5.1), fracture toughness (Article 6.10.5.2), and a special fatigue requirement 
for webs (Article 6.10.5.3). The first requirement involves the assessment of the fatigue 
resistance of details as specified in Article 6.6.1 using the Fatigue load combination specified in 
Table 3.4.1-1 and the fatigue live load specified in Article 3.6.1.4. The fracture toughness 
requirements in Article 6.10.5.2 specify that the fracture toughness must satisfy the requirements 
of Article 6.6.2. The special fatigue requirement for the web controls the elastic flexing of the 
web to prevent fatigue cracking. The factored fatigue load for this check is taken as twice the 
result of the Fatigue load combination. 

8.2.4.1 Load Induced Fatigue (Article 6.6.1.2) 

Article 6.10.5.1 requires that fatigue be investigated in accordance with Article 6.6.1. Article 
6.6.1 requires that the live load stress range be less than the fatigue resistance. The fatigue 
resistance (ΔF)n  varies based on the fatigue category to which a particular member or detail 
belongs and is computed using Eq. 6.6.1.2.5-1 for the Fatigue I load combination and infinite 
fatigue life; or Eq. 6.6.1.2.5-2 for Fatigue II load combination and finite fatigue life. 

   THn ΔFΔF   Eq. (6.6.1.2.5-1) 

 
3
1

n N
AΔF 







   Eq. (6.6.1.2.5-2) 

where: N = (365)(75)n(ADTT)SL  Eq. (6.6.1.2.5-3) 

 A = constant from Table 6.6.1.2.5-1  

 n = number of stress range cycles per truck 
passage taken from Table 6.6.1.2.5-2 

 

 (ADTT)SL = single-lane ADTT as specified in Article 
3.6.1.4 

 

 (F)TH = constant-amplitude fatigue threshold 
taken from Table 6.6.1.2.5-3 

 

For this example infinite fatigue life is desired, and thus the Fatigue I Load combination and Eq. 
(6.6.1.2.5-1) are considered. 

The fatigue resistance of the base metal at the weld joining the bracing connection plate located 
10 feet from the pier to the flanges is evaluated below. From Table 6.6.1.2.3-1, it is determined 
that this detail is classified as fatigue category C'. The constant-amplitude fatigue threshold, 
(F)TH, for a category C' detail is 12 ksi (see Table 6.6.1.2.5-3). 
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Substituting the values into Eq. 6.6.1.2.5-1, the allowable stress range (ΔF)n is determined to be 
12.00 ksi. It is noted that this is the minimum allowable stress range throughout the structure. 

    ksi 12.00 THn FF  

The applied stress range is taken as the result of the fatigue loading with a dynamic load 
allowance of 15 percent applied and distributed laterally by the previously calculated distribution 
factor for fatigue. It is demonstrated below that the applied stress range in the top and bottom 
flange is acceptable. 

Bottom of Top Flange: 
 

   
      








 


50,027
24.412852

50,027
24.41210450.1Δfγ  

(f) = 0.59 ksi ≤ (F)n = 12.00 ksi (satisfied) 

Top of Bottom Flange: 
 

   
      








 


50,027
77.3712852

50,027
77.371210450.1Δfγ  

(f) = 5.29 ksi ≤ (F)n = 12.00 ksi (satisfied) 

8.2.4.2 Distortion Induced Fatigue (Article 6.6.1.3) 

A positive connection is to be provided for all transverse connection-plate details to both the top 
and bottom flanges to prevent distortion induced fatigue.  

8.2.4.3 Fracture (Article 6.6.2) 

The appropriate Charpy V-notch fracture toughness, found in Table 6.6.2-2, must be specified 
for main load-carrying components subjected to tensile stress under Strength I load combination. 

8.2.4.4 Special Fatigue Requirement for Webs (Article 6.10.5.3) 

Article 6.10.5.3 requires that the shear force applied due to the fatigue loading must be less than 
the shear-buckling resistance of interior panels of stiffened webs.  

u crV V  Eq. (6.10.5.3-1) 

However designs utilizing unstiffened webs at the strength limit state, as is the case here, 
automatically satisfy this criterion. Thus, Eq. 6.10.5.3-1 is not explicitly evaluated herein. 
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8.3 Exterior Girder Check: Section 1-1 

8.3.1 Constructibility (Article 6.10.3) 

The constructibility of the system in the positive bending region will be evaluated in a similar 
manner to the constructibility check in the negative bending region.  

8.3.1.1 Deck Placement Analysis  

The results from the deck casting sequence analysis, previously presented in Table 17, are 
referenced for the following calculations of fbu. 

8.3.1.1.1 Strength I: 

Top Flange:   1.0(1.25)(871)(12) 21.28ksi
614.0buf    

Bottom Flange: 1.0(1.25)(871)(12) 14.72ksi
887.7buf    

8.3.1.1.2 Strength IV: 

Top Flange:  1.0(1.5)(871)(12) 25.53ksi
614.0buf    

Bottom Flange: 1.0(1.5)(871)(12) 17.66ksi
887.7buf    

8.3.1.2 Deck Overhang Loads 

The deck overhang loads are the same for the positive bending region as the negative bending 
region; however the lateral bending stresses may differ due to potentially varying amplification 
factors, which are a function of the vertical bending stresses (fbm) and the unbraced length. To 
compute the amplification factor in the positive bending region, the following equation is first 
evaluated to determine if first-order elastic analysis is applicable. 

ycbm

bb
pb F/f

RC
L2.1L   Eq. (6.10.1.6-2) 

Lp is determined using Eq. 6.10.8.2.3-4. 

p t

yc

E
L r

F
  Eq. (6.10.8.2.3-4) 
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where: 
112 1
3

fc

t

c w

fc fc

b
r

D t

b t


 
  

 

 Eq. (6.10.8.2.3-10) 

14 3.477in.
1 (25.26)(0.4375)12 1
3 (14)(0.75)

tr  
 
 

 

 

Therefore, Lp is computed as follows. 

29,0003.477 83.74in.
50pL    

As previously described, the moment gradient modifier is determined from the following 
equation. 

2

1 1

2 2

1.75 1.05 0.3 2.3b

M M
C

M M

   
      

   
 Eq. (A6.3.3-7) 

The maximum positive bending stresses due to the deck casting occur at 36 feet from the pier. 
Thus, the critical lateral bracing segment is the lateral bracing panel that begins at 20 feet from 
the pier and ends at 40 feet from the pier. The applicable moment values for this lateral bracing 
segment are given below. 

M2  = 850 k-ft. M1  = 2Mmid – M2 ≥M0 

Mmid  = 831 k-ft. M1  = 2(831) – (850) = 812 ≥ 683 

M0  = 683 k-ft. M1  = 812 k-ft. 

Cb is then computed as follows. 

2812 8121.75 1.05 0.3 1.02 2.3 1.02
850 850bC
   

        
   

 

According to Article 6.10.1.10.2, the web load-shedding factor, Rb, is 1.0 for constructability 
evaluations. The maximum vertical bending stress occurs in the top flange under the Strength IV 
load combination and was computed above to equal 25.53 ksi. Lastly, Fyc is equal to 50 ksi. The 
information required for evaluation of Eq. 6.10.1.6-2 is now known. 

(1.02)(1.0)240 in. 1.2(83.74) 142.025.53
50

bL     (not satisfied) 
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Therefore, the first-order elastic analysis is not applicable, and the second-order compression 
flange lateral bending stresses are calculated below. 

1 1
0.85

1
l l l

bm

cr

f f f
f

F

 
 
  
  
 

 Eq. (6.10.1.6-4) 

To calculate the amplification factor (the term in bracket in Eq. 6.10.1.6-4), the elastic lateral 
torsional buckling stress, Fcr, must be determined, which can be calculated from Appendix A or 
Section 6.10.8. As discussed above, Appendix A is applicable if the flange nominal yield 
strength is less than or equal to 70 ksi and the web is classified as either compact or non-
compact. The following calculations demonstate that Appendix A is applicable. 

50ksi 70ksiyfF    (satisfied) 

2 5.7c

w yc

D E

t F
        Eq. (A6.1-1) 

Dc = 26.01 – 0.75 = 25.26 in. 

2(25.26) 29,0005.7 115.47 137.27
(0.4375) 50

    (satisfied) 

Since Appendix A is applicable, the elastic lateral torsional buckling stress is determined from 
Article A6.3.3. 

 
 

2
2

2 1 0.0779b
cr b t

xcb t

C E J
F L r

S hL r


   Eq. (A6.3.3-8) 

With the exception of the variable J, the variables in Eq. A6.3.3-8 have been previously 
computed above. 

3 31 1- 0.63 1- 0.63
3

fc ft

w fc fc ft ft

fc bt

t t
J Dt b t b t

b b

    
           

 Eq. (A6.3.3-9) 

             3 3 31 42 0.4375 14 0.75 0.966 16 1.25 0.95 12.97in.
3

J      

Therefore, 

   

    
 

2
2

cr 2

1.02 π 29,000 13.56F 1 0.0779 240/3.477 66.77ksi
610.0 44.0240/3.477

    
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The amplification factor for Strength I is then equal to 1.248. 

0.85AF 1.248 1.0 1.248
21.281
66.74

   
 
 

 

 

Similarly, the amplification factor for Strength IV is equal to 1.377. 

0.85AF 1.377 1.0 1.377
25.531
66.74

   
 
 

 

 

Since the construction load magnitudes are the same for both the positive and negative bending 
regions, the previously computed lateral forces on the flanges due to the vertical load on the 
overhang brackets is applicable; however, the lateral moment is not the same due to the different 
lateral bracing distance.  

8.3.1.2.1 Strength I: 

Dead loads: 

F = Fl = 673.8 lbs/ft. 

2 2(0.6738)(20) 22.46k-ft
12 12
l b

l

F L
M     

Top Flange: 2

22.46(12) 11.00 ksi
0.75(14) / 6

l
l

l

M
f

S
    

Bottom Flange: 2

22.46(12) 5.05 ksi
1.25(16) / 6

l
l

l

M
f

S
    

Live loads: 

F = Pl = 4,500 lbs. 

(4.5)(20) 11.25k-ft
8 8
l b

l

PL
M     

Top Flange: 2

11.25(12) 5.51ksi
0.75(14) / 6

l
l

l

M
f

S
    

Bottom Flange: 2

11.25(12) 2.53 ksi
1.25(14) / 6

l
l

l

M
f

S
    
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Total (w/ Amplification): 

Top: fl = 11.00 + 5.51 = 16.51(1.248) = 20.60 ksi  

Bot.: fl = 5.05 + 5.51 = 10.56(1.00) = 10.56 ksi  

8.3.1.2.2 Strength IV: 

Dead loads: 

F = Fl = 726.0 lbs/ft. 

2 2(0.7260)(20) 24.20k-ft
12 12
l b

l

F L
M     

Top Flange: 2

24.20(12) 11.85 ksi
0.75(14) / 6

l
l

l

M
f

S
    

Bottom Flange: 2

24.20(12) 5.45 ksi
1.25(16) / 6

l
l

l

M
f

S
    

Finishing Machine: 

Not applicable 

Total (w/ Amplification): 

Top: fl = 11.85(1.377) = 16.32 ksi 

Bot.: fl = 5.45(1.00) = 5.45 ksi  

Article 6.10.1.6 requires that the lateral bending stresses not exceed 60% of the nominal yield 
stress of the flange under consideration. Comparing the lateral stresses at the Strength I and 
Strength IV, computed above, it is shown that the lateral stresses at both limit states satisfy this 
requirement although the stresses are highest for the Strength I load combination. 

fl top = 20.60 ksi < 0.6Fyf = 30 ksi 

fl bottom =10.56 ksi < 0.6Fyf = 30 ksi 

8.3.1.3 Flexure (Article 6.10.3.2) 

8.3.1.3.1 Compression Flange 

For discretely braced compression flanges, three requirements must be satisfied during 
construction. These are related to prevention of yielding, provision for adequate the flexural 
resistance, and controlling web bend buckling. 
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Flange nominal yielding: 
The total (vertical and lateral) stress in the compression flange is limited to the product of the 
nominal yield strength of the flange, the hybrid girder factor, and the flexural resistance factor 
by: 

bu l f h ycf f R F   Eq. (6.10.3.2.1-1) 

25.63 + 1.36 ≤ (1.0)(1.0)(50) = 26.99 ksi ≤ 50 ksi (satisfied) 

Flexural Resistance: 
The flexural resistance of the section must be evaluated using Eq. 6.10.3.2.1-2, which requires 
the calculation of the nominal flexural resistance of the flange while in the noncomposite state. 

1
3bu l f ncf f F   Eq. (6.10.3.2.1-2) 

Article 6.10.3.2 states the nominal flexural resistance of the flange can be determined from 
computing Fnc in Article 6.10.8.2 or computing the lateral torsional buckling resistance, Mnc, 
from Article A6.3.3 divided by the compression flange section modulus. Since it was 
demonstrated in the previous section that the section satisfies the requirements for Appendix A 
applicability, the lateral torsional buckling resistance from Article A6.3.3 is now calculated. 

Computation of the lateral torsional buckling resistance begins with determining the web 
plastification factors. As previously stated, if the section satisfies Eq. A6.2.1-1 the web is 
considered compact, and the web plastification factors are determined by dividing the plastic 
moment by the yield moment. 

( )

2
CP

cp

pw D

w

D

t
  Eq. (A6.2.1-1) 

The depth of web in compression of the non-composite section at the plastic moment is 
determined from the equations in Appendix D. First the girder component forces are determined. 

Pc  = (14)(0.75)(50) = 525 kips 

Pt  = (16)(1.25)(50)  = 1,000 kips 

Pw = (42)(0.4375)(50) = 918.8 kips 

Pc + Pw = 525 +918.8 kips = 1,443.8 ≥ Pt = 1,000 kips 

Therefore, the plastic neutral axis is in the web. 

The neutral axis location is then determined as follows. 

1
2

c t

w

P PD
y

P

  
   
   
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42 525 1,000 1 10.14 in.
2 918.8

y
  

    
   

 

The plastic neutral axis is located 10.14 inches above the top of the bottom flange. It is also 
convenient to compute the plastic moment capacity of the non-composite girder at this point. 

 
22

2
w

p c c t t

P
M y D y P d Pd

D

     
  

 

2 2918.8 (10.14) (42 10.14) (1,000)(10.14 1.25 2) (525)(42 10.14 0.75 2)
2(42)pM            

Mp = 39,916 k-in. = 3,326 k-ft. 

Subtracting y  from the total web depth gives Dcp. 

Dcp = 42.0 – 10.14 = 31.86 in. 

)D(pw cp
  is then computed. 

( ) 2

0.54 0.1
CP

yc

pw D

p

h y

E
F

M

R M

 
  

    
  

 Eq. (A6.2.1-2) 

( ) 2

29,000
50 66.43

39,9160.54 0.1
(1.0)(50)(614.0)

CPpw D  
  

  
  

 

Eq. A6.2.1-1 is then evaluated where it is determined that the requirements for a compact flange 
are not satisfied. 

( )

2 2(31.86) 145.65
0.4375 CP

cp

pw D

w

D

t
    (not satisfied) 

The non-compact flange requirements, which are expressed by Eq. A6.2.2-1, are next evaluated. 

2 5.7c
w rw

w yc

D E

t F
     Eq. (A6.2.2-1) 

115.47 137.27w rw     (satisfied) 

Therefore, the web plastification factors are governed by equations A6.2.2-4 and A6.2.2-5: 
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( )

( )

1 1 C

C

w pw Dh yc p p

pc

p rw pw D yc yc

R M M M
R

M M M

 

 

    
      

      

 Eq. (A6.2.2-4) 

where: ( ) ( )C CP

c
pw D pw D

cp

D

D
 

 
  

 
 

 Eq. (A6.2.2-6) 

( )
25.2666.43 52.67
31.86Cpw D

 
  

 
 

Thus, 

(1.0)(614)(50) 115.47 52.67 39,916 39,9161 1
39,916 137.27 52.67 (614)(50) (614)(50)pcR

   
      

   
 

Rpc = 1.077 ≤ 1.3 =1.077 

( )

( )

1 1 C

C

w pw Dh yt p p

pc

p rw pw D yt yt

R M M M
R

M M M

 

 

    
      

      

 Eq. (A6.2.2-5) 

(1.0)(888)(50) 115.47 52.67 39,916 39,9161 1
39,916 137.27 52.67 (888)(50) (888)(50)ptR

   
      

   
 

Rpt = 0.974 ≤ 0.899 =0.899 

The series of equations that govern the lateral torsional buckling resistance is based on the 
classification of the lateral brace spacing, where compact lateral bracing distances are classified 
by the following equation. 

Lb   Lp 

(20.0)(12) 240in. 83.74in.b p t
yc

EL L r
F

      (not satisfied) 

Therefore, the lateral brace spacing is not classified as compact and the non-compact lateral 
bracing classification is evaluated as follows. 

Lb   Lr 

2

76.61195.1240 











EJ

hSF

hS

J

F

E
rLL

xcyr

xcyr

trb  Eq. (A6.3.3-5) 
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where: 
Fyr = min 0.7 , ,xt

yc h yt yw

xc

S
F R F F

S

 
 
 

 

 
Fyr =  

887.7min 0.7(50),(1.0)(50) ,50 min 35,72.3,50 35.0ksi
614.0

 
  

 
 

 J = 13.56 in.3 

 H = 43.0 in. 

 
Lr =  

  
   
  

in. 341.4
56.1329000

0.436143576.611
0.43614

56.13
35

29000477.395.1
2









  

Lb = 240 ≤ Lr = 341.4 (satisfied) 

Because the lateral bracing distance is non-compact, the lateral torsional buckling resistance is 
controlled by Eq. A6.3.3-2 of the specifications. 

-
1- 1-

-
yr xc b p

nc b pc yc pc yc

pc yc r p

F S L L
M C R M R M

R M L L

   
    

  
    

 Eq. (A6.3.3-2) 

(35)(614) 240 -83.74(1.02) 1- 1- (1.077)(50)(614) (1.077)(50)(614)
(1.077)(50)(614) 341.4 -83.74ncM

   
    

   
 

Mnc = 26,566 ≤ 33,064 = 26,566 k-in. = 2,214 k-ft. 

The lateral torsional buckling capacity is then expressed in terms of allowable stress by dividing 
the above moment capacity by the section modulus.  

Fnc = 2,214(12) 43.27 ksi
614

  

Equation 6.10.3.2.1-2 can now be evaluated. 

1
3bu f ncf f F l  Eq. (6.10.3.2.1-2) 

125.53 (16.32) (1.0)(43.27) 30.97ksi 43.27ksi
3

     (satisfied) 

Web Bend-Buckling Resistance: 
The section must satisfy Eq. 6.10.3.2.1-3 of the specifications to ensure the section has adequate 
web bend buckling resistance during construction.  
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bu f crwf F  Eq. (6.10.3.2.1-3) 

where: 





















0.7
F

 ,FRmin

t
D

0.9EkF yw
ych2

w

crw  Eq. (6.10.1.9.1-1) 

 
2

9

c

k
D D

  Eq. (6.10.1.9.1-2) 

The depth of web in compression was previously calculated to be 25.26 in. 

 
2

9 24.88
25.26 42.0

k    

 
2

0.9(29,000)(24.88) 70.46ksi>
42

0.4375
crw n ycF R F   

Therefore, Fcrw = 50 ksi 

  25.53 ksi   1.0 50.0 50.0 ksibu f crwf F     (satisfied) 

8.3.1.3.2 Tension Flange 

The section must satisfy the tension flange nominal yielding check under the construction 
loading. 

Tension Flange Nominal Yielding: 
 

fbu + fl ≤ RhFyt Eq. (6.10.3.2.2-1) 

21.28 + 20.60 ≤ (1.0)(1.0)(50) 

41.88 ≤ 50.0 ksi (satisfied)  

8.3.1.4 Shear (Article 6.10.3.3) 

As previously stated, since the design does not require any transverse stiffeners, the shear check 
under the construction loading is automatically satisfied. 

8.3.2 Service Limit State (Article 6.10.4) 

Serviceability requirements of steel I-girder provisions are specified in Article 6.10.4. The 
evaluation of the positive bending region based on these requirements follows. 
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8.3.2.1 Elastic Deformations (Article 6.10.4.1) 

Since the design bridge is not designed to permit pedestrian traffic, the live load deflection will 
be limited to L/800. It is shown below that the maximum deflection along the span length using 
the service loads and a line girder approach is less than the L/800 limit. It is noted, however, that 
satisfying this requirement is optional. 

 = 0.610 in. < L/800 = ( 90 x 12 ) / 800 = 1.35 in. 

8.3.2.2 Permanent Deformations (Article 6.10.4.2) 

The positive bending section must be evaluated for permanent deformations, which are governed 
by Eq. 6.10.4.2.2-1.  

0.95f h yff R F  Eq. (6.10.4.2.2-1) 

where: 1 2 1.3DC DC DW LL IM
f

nc lt st

M M M M
f

S S S




    

It is noted that the moment values in the above equation represent the moments resulting from 
elastic analysis since it has previously been determined that moment redistribution is not 
applicable at the service limit state. 

The stress in the compression flange is shown below to equal 18.97 ksi, which satisfies the 
requirements of Eq. 6.10.4.2.2-1. 

         ksi 97.18
10,001

1221603.1
2,711

12120147
614

12738



ff  

ff  = 18.97 ksi ≤ 0.95RhFyf = 0.95(1.0)(50) = 47.5 ksi (satisfied) 

Similarly, the stress in the tension flange is computed to equal 39.74 ksi, also satisfying Eq. 
6.10.4.2.2-1. 

         ksi 74.39
1,248

1221603.1
1,159

12120147
614

12738



ff  

ff  = 39.74 ksi ≤ 0.95RhFyf = 0.95(1.0)(50) = 47.5 ksi (satisfied) 

Thus, all service requirements are satisfied. 

8.3.3 Fatigue and Fracture Limit State (Article 6.10.5) 

8.3.3.1 Load Induced Fatigue (Article 6.6.1.2) 

The fatigue calculation procedures in the positive bending region are similar to those previously 
presented for the negative bending region. In this section the fatigue requirements are evaluated 
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for a bolted connection plate, connecting to the girder flanges for the cross frame located 40 feet 
from the abutment. This connection type was selected over a typical welded detail due to the 
higher fatigue category classification of the bolted connection, and the difficulty of satisfying 
fatigue requirements with a welded connection detail. Specifically, a considerably larger section 
would be required to satisfy the fatigue requirements if a fatigue category C’ detail was to be 
used. Specifically, the bolted connection is classified as fatigue category B (see Table 6.6.1.2.3-
1), which corresponds to a constant-amplitude fatigue threshold of 16 ksi, compared to a 
constant-amplitude fatigue threshold of 12 ksi for a C’ detail.  

The permissible stress range is computed using Eq. 6.6.1.2.5-1 for the Fatigue I load 
combination and infinite fatigue life. 

   THn ΔFΔF   Eq. (6.6.1.2.5-1) 

    ksi 16.00ΔFΔF THn   

Bottom of Top Flange: 
 

   
      








 


48,806
13.412143

48,806
13.41252850.1Δfγ  

(f) = 1.02 ksi ≤ (F)n = 16.00 ksi (satisfied) 

Top of Bottom Flange: 
 

   
      








 


48,806
94.3712143

48,806
94.371252850.1Δfγ  

(f) = 9.39 ksi ≤ (F)n = 12.00 ksi (satisfied) 

8.3.3.2 Special Fatigue Requirement for Webs (Article 6.10.5.3) 

The following shear requirement must be satisfied at the fatigue limit state.  

v crV V  Eq. (6.10.5.3-1) 

However this is an unstiffened web. Therefore, this limit is not explicitly evaluated. 

8.3.4 Strength Limit State (Article 6.10.6) 

8.3.4.1 Flexure (Article 6.10.6.2) 

For compact sections in positive bending Equation 6.10.7.1.1-1 must be satisfied sections at the 
strength limit state. 
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1
3u l xt f nM f S M   Eq. (6.10.7.1.1-1) 

However, the lateral bending stresses are neglible for the straight, composite girder considered 
herein. The following requirements must be satisfied for a section to qualify as compact: 

Fy = 50 ksi ≤ 70 ksi (satisfied) 

42.0 96.0 150
0.4375w

D

t
     (satisfied) 

 2 2 0
0 3.76

0.4375
cp

yc
w

D
E

Ft
    (satisfied) 

Therefore, the section is compact, and the nominal flexural resistance is based on Article 
6.10.7.1.2. Additionally, the following requirement must be evaluated. 

Dp ≤ 0.1Dt 

The depth of web in compression at the plastic moment was determined. 

Dp = 7.49 in. 

Dt = total depth of the composite section 

Dt = 8 + 2 + 42 + 1.25 = 53.25 in. 

Dp = 7.49 > 0.1Dt = 0.1(53.25) =5.33 (not satisfied) 

Therefore, the nominal flexural capacity is determined from. 

1.07 0.7 p

n p

t

D
M M

D

 
  

 
 Eq. (6.10.7.1.2-2) 

ft-k 6,235
25.53
49.77.007.1418,6 








nM  

From elastic analysis procedures, the maximum positive moment under the Strength I load 
combination is 4,192 k-ft., which is at a distance of 36 feet from the left support. The 
redistribution moment must then be added to this moment to determine the total applied moment. 
The redistribution moment varies linearly from zero at the end-supports to a maximum at the 
interior pier of 936 k-ft. Thus, the redistribution moment at 36' from the pier is simply computed 
as follows. 

Mrd= 36/90*(936) = 0.4(936) = 374 k-ft 

The total design moment is then the sum of the redistribution moment and the elastic moment. 
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Mu = 4,192 + 374 = 4,566 k-ft 

The bending strength of the positive bending region is then shown to be sufficient. 

u f nM M  

4,566 k-ft. ≤ (1.0)(6,235) = 6,235 k-ft (satisfied) 

8.3.4.2 Ductility Requirements (6.10.7.3) 

Sections in positive bending are also required to satisfy Eq. 6.10.7.3-1 , which is a ductility 
requirement intended to prevent crushing of the concrete slab. 

Dp ≤ 0.42Dt Eq. (6.10.7.3-1) 

Dp = 7.49 in. ≤ 0.42(53.25) = 22.37 in. (satisfied) 

8.3.4.3 Shear (6.10.6.3) 

The shear requirements at the strength limit state are expressed by: 

u v nV V  Eq. (6.10.9.1-1) 

where:  Vn = Vcr = CVp Eq. (6.10.9.2-1) 

 Vp = plastic shear force (kip)  

 Vp = 0.58FywDtw Eq. (6.10.9.2-2) 

 C = ratio of the shear buckling resistance to the shear 
yield strength determined from Article 6.10.9.3.2  

 

The computation of C is based on the web slenderness classification. Thus, the web slenderness 
is first evaluated in terms of the following equation. 

1.12
w yw

D Ek

t F
  

42.0 (29,000)(5)96.0 1.12 1.12 60.31500.4375 yw
w

D Ek
Ft

      (not satisfied) 

The web slenderness is next evaluated in terms of the following equation. 

1.12 96.0 1.40
yw w yw

Ek D Ek

F t F
    
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1.12 60.31 96.0 1.40 75.4
yw w yw

Ek D Ek

F t F
      (not satisfied) 

Lastly, the web slenderness is evaluated as follows.  

96.0 1.40 75.4
w yw

D Ek

t F
    (satisfied) 

Thus, C is calculated according to Eq. 6.10.9.3.2-6. 

2 2

1.57 1.57 (2,900) 0.494
(96.0)yw

w

Ek
C

FD
t

 
   

 
    
 

 Eq. (6.10.9.3.2-6) 

Therefore, the shear capacity is equal to:  

Vcr = CVp =(0.494)(0.58)(50)(42)((0.4375) = 263.2 kips 

Thus, the shear requirements at the strength limit state (and consequently all other limit states as 
previously discussed) are satisfied.  

V = 257 kips ≤ v crV = (1.0)(263.2) = 263.2 kips (satisfied) 

8.4 Cross-frame Design 

The cross-frames alone provide restoring forces during construction to enable the girders to 
deflect equally. Once the system acts compositely, the concrete slab also contributes to providing 
restoring forces and continuously braces the top flanges at the girder. Therefore, the engineer 
may opt to provide temporary cross-frames that are only required during the construction phase. 
However, it is assumed in this design example that all cross frames are permanent. Although 
several styles of cross-frames may be used (refer to Chapter 8 for a more complete discussion), a 
typical K-shaped cross-frame (as shown in Figure. 17) is used for this example. The design of the 
intermediate and end cross-frames is demonstrated in the sections that follow. 
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Figure 17  Intermediate Cross Frame 

 
8.4.1 Intermediate Cross-frame Design 

This section describes the design process for an intermediate cross-frame. The cross-frames are 
most critical while the system is in the noncomposite stage under wind loading. The wind load 
per unit length on the bottom flange is given by Article 4.6.2.7. 

  (0.050)(44.25 12)= =0.092k/ft.
2 2
DP d

w  

8.4.1.1 Bottom Strut 

The bottom strut is in compression under the wind loading; therefore, the limiting slenderness 
ratio for bracing members in compression must be satisfied as specified in Article 6.9.3. For 
bracing members, the slenderness ratio is limited to 140, which is applicable for the major as 
well as the minor axes. 

The unbraced length of the bottom strut is assumed to be 4'-9" about the minor principle axis, 
and 9'-6" about the major principle axis. Article 4.6.2.5 states that the effective-length factor K 
for trusses and frames, with bolted or welded connections at both ends, may be taken as 0.750. 
Therefore: 

 min

0.75(4.75)(12) 0.305in.
140zr     

min

0.75(9.5)(12) 0.611in.
140yr    

The cross-frames will be composed of single-angle members, and the angle capacity will be 
determined from the AISC LRFD Specifications for Design of Single-Angle Members from the 
Third Edition of the AISC LRFD Manual of Steel Construction. Based on the required 
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slenderness values and the minimum structural steel thickness of 5/16" specified in Article 6.7.3, 
an L4 x 4 x 5/16 member will be selected. The required section properties are calculated below 
and depicted in Figure 18. In these computations it is assumed that the connection plate is ½-inch 
thick.  

A = 2.40 in.2 

rz = 0.781 in. 

Iz = Arz
2 = (2.40)(0.781)2 = 1.46 in.4 

Iw = Ix + Iy – Iz = 3.67 + 3.67 – 1.46 = 5.88 in.4 

rw = wI 5.88 1.57in.
A 2.40

   

rx = ry = 1.24 in. 

 

Figure 18  Single Angle for Intermediate Cross Frame 

 
The horizontal wind force applied to the brace point can be calculated in the following manner, 
where Lb is taken as the maximum cross frame spacing and the wind load per unit length (w) is 
0.092 k/ft. as previously determined: 

Pw = wLb = (0.092)(20.0) = 1.84 kips 

The bottom struts in the exterior bays of the system must carry the entire wind force Pw; 
therefore, all of the bottom struts will be conservatively designed to satisfy the requirements of 
the exterior bay struts. 
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The Strength III load combination controls the lateral bracing design due to having the largest 
load factor for wind, which is specified to be 1.40. The following calculation determines the 
factored axial wind force in the bottom strut, including the  factor. 

Pu = 1.00(1.40)(1.84) = 2.58 kips 

Connected through one leg only, the strut is eccentrically loaded. The member then experiences 
both flexure and axial compression; therefore the design must satisfy the interaction equation 
given in Section 16.3 of the LRFD Manual of Steel Construction.  

8.4.1.1.1 Axial Compression 

The axial compressive resistance of the selected angle is calculated from the following equation 
from the AISC SAM Section 4: 

Pr = cPn 

where:  c  = resistance factor for axial compression 

  = 0.90 

 Pn  = AgFcr 

 Ag = gross area of the member 

 Fcr = critical buckling stress 

The critical buckling stress based on buckling about the minor principle axis (Z-Z) is determined 
as follows. 

 
2

0.658 if 1.5cQ

cr y cF Q F Q
    

(0.75)(4.75)(12) 50 0.723
(0.781) 29,000

y

c

FKl

r E


 

  
    
   

 

The appropriate equation to be used for the calculation of Q is selected based on the b/t ratio of 
the angle. The aspect ratio is first evaluated in terms of the following equation. 

0.446 10.7
y

b E

t F
   

4.0 12.80 10.70
0.3125

b

t
    (not satisfied) 

Since the above equation is not satisfied, the following equation is evaluated. 
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0.910 21.9
y

b E

t F
   

12.80 21.9b

t
   (satisfied) 

Therefore, the reduction factor for local buckling Q is calculated from the equation below.  

4.0 501.34 0.761 1.34 0.761 0.93629,0000.3125
yb F

Q
Et

      Eq. (4-3b) 

λ Q 0.723 0.936 0.699 1.5c     (satisfied) 

Therefore, Fcr is equal to the following. 

   
2 2(0.936)(0.723)0.658 (0.936) 0.658 (50) 38.13ksicQ

cr yF Q F


    Eq. (4-1) 

The critical buckling stress based on buckling about the geometric axis(Y-Y) is computed as: 

(0.75)(9.5)(12) 50 0.911
(1.240) 29,000

y

c

FKl

r E


 

  
    
   

 

Q = 0.936 (same as above) 

λ Q 0.911 0.936 0.881 1.5c     (satisfied) 

Therefore, Fcr is again computed using Eq. 4-1. 

 
2(0.936)(0.911)(0.936) 0.658 (50) 33.81ksicrF    (governs) 

Thus, the lower critical stress occurs for buckling about the geometric axis. Consequently, Pn and 
Pr are computed as follows.  

Pn = (2.40)(33.81) = 81.14 ksi 

Pr = 0.90(81.14) = 73.03 ksi 

Therefore, the compressive capacity of the bottom strut is shown to well exceed the required 
capacity. 

Pu = 2.58 kips < 73.03 ksi   (satisfied) 
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8.4.1.1.2 Flexure: Major-Axis Bending (W-W) 

The major-axis (W-W) bending capacity of the angle is based on either the local buckling 
(Section 5.1.1) or the lateral-torsional buckling (Section 5.1.3) resistance.  

Local Buckling: 
The local buckling limit state must be checked when the tip of the angle is in compression. The 
applicable equation for calculation of the local buckling capacity is determined based on the b/t 
ratio of the bracing member. The b/t ratio is first evaluated in terms of the following equation. 

0.54 13.0
y

b E

t F
   

4.0 12.8 13.0
0.3125

b

t
    (satisfied) 

Therefore, the moment resistance is computed according to Eq. 5.1a. 

Mnw = 1.5FySc Eq. (5.1a) 

Mnw = 1.5(50)(5.88/2.83) = 155.8 k-in. 

The applied moment about the major axis is computed using the following procedure. 

Muw = B1wMw = B1wPuew  

where: 1

1

1.0
1

m
w

u

e w

C
B

P
P

 



 Eq. (6-2) 

1 2= 0.6 -  0.4( / )mC M M  Eq. (C1-3) 

The Cm factor accounts for the moment gradient, and is to be taken as 1.0 for equal end 
moments.  

Cm = 1.0 

(0.75)(4.75)(12) 50 0.360
(1.57) 29,000cw



 
  
 

 

1 2 2

(2.4)(50) 925.9kips
(0.36)w

g y

e

cw

A F
P


    

1
1.0 1.02.581 925.9

wB  

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Pu has previously been calculated as 2.58 kips and ew was shown in Figure 17 to be 1.77 inches 
Thus, Muw is equal to 4.57 as shown below. 

Muw = (1.00)(2.58)(1.77) = 4.57 k-in 

Thus, compared to the local buckling resistance of 155.8 k-in., the applied moment is 
satisfactory. 

Muw = 4.57 k-in < Mnw = 155.8 k-in. (satisfied) 

Lateral-Torsional Buckling: 
The elastic lateral-torsional buckling capacity Mob is determined from Eq. 5-5 of Section 5.3.1 of 
the AISC SAM. 

2 20.46
ob b

Eb t
M C

l
  Eq. (5-5) 

where: Cb = 1.0 for members (as considered here) with uniform moment throughout 
their unbraced length according to the commentary of AISC SAM Section 
5.1.3. 

   
2 20.46(29,000) 4.0 0.3125

1.0 182.8k-ft.
(9.5)(12)obM    

The yield moment for the major principal axis bending is determined below: 

5.8850 103.9k-ft.
2.83

w
y y w y

w

I
M F S F

c

   
      

  
 

Therefore, Mob > My and the lateral torsional buckling capacity is thus computed according to 
Eq. 5-3b. 

1.92 1.17 1.5nw y ob y yM M M M M   
 

 Eq. (5-3b) 

       1.92 1.17 103.9 / 182.8 103.9 1.5 103.9nwM    
 

 

107.8 155.9 107.8k-in.nwM     

Thus, the lateral torsional buckling capacity about the major axis is sufficient to resist the applied 
moment of 4.57 k-in. 

107.8 k-in. 4.57k-in.nw uwM M    (satisfied) 
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8.4.1.1.3 Flexure: Minor-Axis Bending(Z-Z) 

The flexural capacity about the minor axis of a member where the corner of the angle is in 
compression (which causes the tip of the angle leg to be in tension) is calculated using Eq. 5-2. 

1.461.50 1.50 1.50(50) 69.7k-ft.
1.57

z
nz y y

z

I
M M F

c

   
      

  
 Eq. (5-2) 

The applied moment about the minor axis is computed using the following equation. 

Muz = B1zMz = B1zPuez  

where: 1

1

1.0
1

m
z

u

e z

C
B

P
P

 



 

1.0mC   

(0.75)(4.75)(12) 50 0.723
(0.781) 29,000cz



 
  
 

 

1 2 2

(2.4)(50) 229.6kips
(0.723)w

g y

e

cw

A F
P


    

1
1.0 1.02.581 229.6

wB  


 

Therefore: Muz = B1zMz = B1zPuez = (1.01)(2.58)(0.51) = 1.33 k-in. 

Thus, the flexural capacity about the minor axis is sufficient. 

Muz = 1.33 k-in. < Mnz = 69.7 k-in.  (satisfied) 

8.4.1.1.4 Flexure and Axial Compression: 

The interaction between flexure and axial compression must also be checked according to 
Section 6.1.1 of AISC SAM. This evaluation begins with determining the ratio between the 
applied axial load and the axial capacity.  

2.58 0.04 0.2
73.03

u

n

P

P
    

Because the ratio between the applied axial force and the axial capacity is less than 0.2, Eq. 6-1b 
must be satisfied. 
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1.0
2

u uw uz

n b nw b nZ

P M M

P M M  

 
   
 

 Eq. (6-1b) 

According to Article 6.5.4.2, b and c are to be taken equal to 1.0 and 0.9 respectively. Thus, it 
is demonstrated that Eq. 6-1b is satisified. 

 
2.58 4.57 1.33 0.081 1.0

2 0.9 (73.03) 1.00(107.8) 1.00(69.7)
 

    
 

  (satisfied) 

8.4.1.2 Diagonals 

The diagonals carry a compressive force that is the result of wind loads and reactions from the 
loads carried in the top strut. It is assumed that each bay carries a portion of Pw, and the two 
diagonals carry equal loads. From statics the following equation can be derived to determine the 
axial force in the diagonals. 

  2 2
. 2

w
w diag

P
P a b

na

 
   

 
 

where: 
  
 a = one-half the transverse girder spacing 
 
 b = vertical distance between working points for the diagonals 
 

Pw = total applied wind-load force 
 
n = number of bays 
 

 
 

 

2
2

.

10.0 (12) 1.84(30) 0.34kips
2 2(3) 10.0(12) 2w diag

P
  

      
   

 

The axial force in each diagonal due to the wind loading under the Strength III load combination 
is as follows: 

Pu = 1.00(1.40)(0.34) = 0.48 kips 

The unbraced length of the diagonal in compression, taken as the distance between the working 
points, is calculated below: 

2
210.0(12) (30.0) 67.08in.

2
l

 
   

 
 

A similar analysis was conducted for the diagonals as was conducted for the bottom strut, and 
the L 4 x 4 x 5/16" member was determined to be adequate for the design wind loading. 
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8.4.2 End Cross-frame Design 

The lateral wind forces are transmitted from the deck to the substructure by the end cross-frames. 
The following section describes the design of end cross-frames (see Figure 19). 

 
Figure 19  End Cross Frame 

 
8.4.2.1 Top Strut 

The top strut of the end cross-frames carries the compressive forces that are a result of the wind 
load on the structure and vehicles, dead load of the slab, including the haunch, and the wheel 
loads, including the dynamic load allowance. The total wind pressure PD, calculated previously, 
is 0.050 ksf. The total height of the structure is as follows: 

 Barrier   = 42.00 in. 

 Deck   = 8.50 in. 

 Haunch  = 2.00 in. 

 Girder - top flange = 43.25 in. 

    = 93.75 in. = 7.98 ft 

The wind load per unit length on the structure is computed as follows: 

ws = (7.98)(0.050) = 0.40 kips/ft 

From Article 3.8.1.3, the wind load per unit length acting normal to the vehicles at a distance of 
6.0 feet above the roadway is: 
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wL = 0.10 kips/ft  

The wind loads on the end cross-frames is assumed to be half of the total wind load and is 
computed below. 

90.00.40 18.0kips
2WLP

 
  

 
 

90.00.10 4.5kips
2WLP

 
  

 
 

Each bay is assumed to carry an equal portion of the wind load; therefore, the axial force in the 
top strut is calculated as follows: 

(PWS)top strut = 18.00/3 = 6.00 kips 

(PWL)top strut = 4.50/3 = 1.50 kips 

The dead load from the slab, concrete haunch, and steel girder acting on the top strut is computed 
below: 

 Slab   = 8.50 (14.00 + 12.00 + 7.50)(1/144)(0.150) = 0.30 

 Concrete Haunch = 7.50 (14.00 + 12.00 + 7.50/2)(1/144)(0.150) = 0.23 

 Steel Girder  = 0.03 

    = 0.56 kip/ft. 

As specified in Article 3.6.1.2.4, the design lane is a 0.64 kips/ft. load distributed over a 10.0 
foot width. 

0.64 7.5014.0 12.0 0.16 kips/ft
10.0(12) 2LLw

 
    

 
 

The design truck wheel load plus the dynamic load allowance is discussed in Article 3.6.1.2.2 
and is as follows. 

32.0 (1.33) 21.28kips
2LLP    

Figure 20 illustrates the position of the above computed live loads that produce the maximum 
moment and shear in the strut. The maximum moments and reactions in the top strut are then as 
follows. 

MDC = 1.75 k-ft 
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MLL+IM = 18.30 k-ft 

RDC = 3.50 kips 

RLL+IM = 25.1 kips 

 
Figure 20  Live load on Top Strut 

 
The Strength I load combination governs the design of the top strut of the end cross-frame 
design. Thus, the controlling moments and shears are computed as follows. 

8.4.2.1.1 Strength I: 

Mu = 1.00[1.25(1.75) + 1.75(18.30)] =34.21 k-ft 

3.5 25.11.0 1.25 1.75 24.15kips
2 2uV

    
      

    
 

To choose a preliminary member for the top strut, the required section modulus assuming the 
moment capacity of the member is Mp is computed. 

r f n f p f yM M M F Z      

34.2(12) 8.21in.
1.0(50)

Z    

In addition to meeting the flexural requirements, the minimum material thickness requirements 
must also be considered when selecting the member. Therefore, a W10 x 19 is selected as a trial 
member. 

To determine the flexural capacity of the W10x19 section, the applicability of Appendix A is 
first evaluated. 

Fy = 50 ksi ≤ 70 ksi 
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2 2(9.41/ 2) 37.64 5.7 137.3
0.25

c

yc
w

D E
Ft

     Eq. (A6.1-1) 

Therefore, Appendix A is applicable. The web slenderness is then evaluated based on Eq. 
A6.2.1-1. 

( )

2
CP

cp

pw D

w

D

t
  Eq. (A6.2.1-1) 

( ) 2

0.54 0.1
CP

yc

pw D

p

h y

E
F

M

R M

 
  

    
  

 Eq. (A6.2.1-2) 

( ) 2

29,000
50 88.92

(21.6)(50)0.54 0.1
(1.0)(18.8)(50)

CPpw D  
  

  
  

 

2 2(9.41/ 2) 37.64 88.92
0.25

c

w

D

t
    (satisfied) 

Therefore, the web is compact and the web plastification factors are thus computed as follows. 

(21.6)(50) 1.149
(18.8)(50)

p

pc

yc

M
R

M
    Eq. (A6.2.1-3) 

(21.6)(50) 1.149
(18.8)(50)

p

pt

yt

M
R

M
    Eq. (A6.2.1-4) 

The flange slenderness must also be evaluated. The following calculations show that the 
compression flange is compact. 

0.38 9.15pf
yc

E
F

    

4.02 5.09 9.15
2 2(0.395)

fc

f

fc

b

t
      (satisfied) 

Therefore, the flexural capacity of the section based on local buckling is equal to the product of 
the web plastification factor and the yield moment, as specified in Eq. A6.3.2-1. 

( ) 1.149(50)(18.8) /12 90.0k-ft.nc FLB pc ycM R M    
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The flexural capacity based on lateral torsional buckling must also be investigated. Alternative 
equations are used to compute the lateral torsional buckling capacity based on the lateral bracing 
distance classification. The lateral bracing distance classifications are based on the value of rt. 

4.02 1.039in.
1 (9.41/ 2)(0.25)1 1212 1 3 (4.02)(0.395)3

fc

t

c w

fc fc

b
r

D t

b t

  
      
             

 Eq. (A6.3.3-10) 

The lateral bracing distance is classified as compact if Eq. A6.3.3-4 is satisfied. 

25.03in.p t
yc

EL r
F

   Eq. (A6.3.3-4) 

Lb = (5.0)(12) = 60 in. > 25.03 in. (not satisified) 

Therefore, the lateral bracing distance is next evaluated compared to the non-compact lateral 
bracing limit. 

2

60 1.95 1 1 6.76 yr xc

b r t

yr xc

F S hE J
L L r

F S h EJ

 
      

 
 Eq. (A6.3.3-5) 

where:  min 0.7 , ,xt
yr yc h yt yw

xc

S
F F R F F

S

 
  

 
 

   
18.8min 0.7(50),(1.0)(50) ,50 min 35,50,50 35.0ksi
18.8yrF

 
   

 
 

3 31 1- 0.63 1- 0.63
3

fc ft

w fc fc ft ft

fc bt

t t
J Dt b t b t

b b

    
           

 Eq. (A6.3.3-9) 

  3 3 31 (9.41)(0.25) 2(4.02)(.395) .938 0.204in.
3

J     

    9.81in.h   

 
229,000 0.204 35 (18.8)(9.81)1.95(1.039) 1 1 6.76 110in.

35 (18.8)(9.81) 29,000 0.204rL
 

    
 

 

   60in. 110in.b rL L     

Therefore, the lateral torsional buckling resistance is controlled by equation A6.3.3-2 of the 
specifications. 
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-

1- 1-
-

yr xc b p

nc b pc yc pc yc

pc yc r p

F S L L
M C R M R M

R M L L

   
    

  
    

 

(1.149)(50)(18.8) 1,080k-ft.pc ycR M    

(35)(18.8) 60 25.031 911.7k-ft.
(1.149)(50)(18.8) 112.7 25.03ncM

    
     

   
 

    ( ) 911.7k-in. 75.9k-ft.nc LTBM    

Comparing the flange local buckling and lateral torsional buckling capacities, it is determined 
that the lateral torsional buckling capacity controls the design of the top strut. 

  Mnc = min(90.0, 75.9) 

  fMnc = (1.0)(75.9) = 75.9 k-ft. 

Thus, the moment capacity is sufficient. 

  fMnc = 75.9 k-ft. > Mu = 34.21 k-ft.    (satisfied) 

In addition to the flexural capacity, the shear capacity must be evaluated to ensure the member is 
acceptable. The shear capacity of the member is computed below: 

n cr pV V CV   Eq. (6.10.9.2-1) 

where: 0.58 0.58(50)(9.41)(0.25) 68.22kipsp yw wV F Dt    Eq. (6.10.9.2-2) 

The formula used to compute C varies depending on the web slenderness as shown below. 

(29,000)(5.0)1.12 1.12 60.31
50yw

Ek

F
   

   9.41 37.64 60.31
0.25w

D

t
    

Therefore,  C = 1.0 

(1.0)(68.22) 68.22kips 24.15kipsv n uV V      (satisfied) 

Thus, the shear requirements are satisfied. 

The member must also be evaluated for combined axial compression and flexure, for which the 
Strength III and Strength V load combinations are most likely to govern.  
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8.4.2.1.2 Strength III: 

   Pu = 1.00[1.25(0.00) + 1.40(6.00)] = 8.40 kips 

   Mux = 1.00[1.25(1.75) + 1.40(0.00)] = 2.19 k-ft. 

Article 6.9.2.1 specifies the axial capacity as follows. 

Pr = cPn Eq. (6.9.2.1-1) 

where: c = 0.90 

The equation used for determining Pn is selected based on the value of the following slenderness 
parameter. 

2 2
(0.75)(9.5)(12) 50 1.67

(0.874) 29,000
y

s

FKl

r E


 

   
     

  
 Eq. (6.9.4.1-2) 

    Because  is less than 2.25, Pn is computed as follows. 

1.670.66 (0.66) (50)(5.62) 140.4kipsn y sP F A    Eq. (6.9.4.1-1) 

 Thus, the factored resistance is equal to 126.4 kips. 

  Pr = 0.90(140.4) = 126.4 kips 

The width-to-thickness ratios of the flange and web are then evaluated to determine the 
governing equation for moment resistance. 

Flange: 

 2 (4.02/ 2) 5.09 0.56 13.49
0.395f y

b E

t F
     

 Web: 

 
2 2 10.2 2(0.395) 2(0.695) 32.08 1.49 1.49

0.25
f

w y

d t k E

t F

     
      
  

 Eq. (6.9.4.2-1) 

 Thus, the moment resistance is equal to Mp. 

   Mrx = fMp = (1.00)(50)(21.6) = 1,080 k-in. = 90.0 k-ft. 

The combined influence of axial force and moment must then satisfy the following equation. 
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8.4 0.2  then,
126.4

u

r

P

P
   

1.0
2

u ux

r rx

P M

P M
   Eq. (6.9.2.2-1) 

8.4 2.19 0.06 1.0
2(126.4) 90.0

    (satisfied) 

8.4.2.1.3 Strength V: 

Similarly, the applied axial force and moment due to the Strength V load combination are 
computed below. 

 Pu = 1.00[1.25(0.00) + 1.35(0.00) + 1.40(6.00) + 0.40(1.50)] = 9.00 kips 

 Mux = 1.00[1.25(1.75) + 1.35(18.30) + 0.40(0.00) + 1.40(0.00)] = 26.89 k-ft. 

The axial load and moment interaction equation 6.9.2.2-1 is also shown to be satisfied for this 
load combination below. 

9.0 26.89 0.333 1.0
2(126.4) 90.0

    (satisfied) 

8.4.2.2 Diagonals 

The diagonals carry a compressive force that is the result of wind loads and reactions from the 
loads carried in the top strut. The geometry of the end cross-frames was previously illustrated in 
Figure 19. As previously discussed, the design of the cross-frame is based on the assumption that 
each bay carries an equal portion of the total wind forces. The axial force is computed below 
using the same process used earlier in this cross-frame design example.  

   18.0kipsWSP   

   4.5kipsWLP   

     2 2
diag. 2

W
W

P
P a b

na

 
   

 
 

    
 

2
2

diag.

10.0(12) 18.030 3.35kips
2 2(3) 10.0(12) 2WSP

  
         

 

    
 

2
2

diag.

10.0(12) 4.530 0.84kips
2 2(3) 10.0(12) 2WLP

  
         
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The axial force in the diagonal as a result of the dead-load reaction RDC on the top strut is 
computed below. 

   
2

2
diag.

10.0(12) 3.530 3.91kips
2 2(30)DCP

  
    

   
 

The axial force in the diagonal as a result of the live-load reaction RLL+IM on the top strut is 
computed as follows. 

   
2

2
diag.

10.0(12) 25.130 28.06kips
2 2(30)LL IMP 

  
    

   
 

The following calculations determine the controlling load combination. 

8.4.2.2.1 Strength I: 

 Pu = 1.00[1.25(3.91) + 1.75(28.06)] = 54.0 kips (governs) 

8.4.2.2.2 Strength III: 

 Pu = 1.00[1.25(3.91) + 1.40(3.35)] = 9.58 kips 

8.4.2.2.3 Strength V: 

 Pu = 1.00[1.25(3.91) + 1.35(28.06) + 0.40(3.35) + 0.40(0.84)] = 44.4 kips 

The initial member selection will be based on the compressive strength slenderness requirements 
of the member and minimum material thickness requirements. The distance between the working 
points will be taken as the unbraced length l. 

   140Kl

r
  

   
2

210.0(12) 30 67.08in.
2

l
 

   
 

 

   0.75(67.08) 0.359in.
140

r    

Thus an L4 x 4 x 5/8 is selected as the trial member, assuming a ½-inch connection plate.The 
member must be evaluated for individual and combined influences of flexure and axial 
compression as detailed below. 

Axial Compression: 
The axial compressive resistance of the member is computed from the following equation: 
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   Pr = cPn 

where:  c = the resistance factor for axial compression 

   c = 0.90 

   Pn = gFcr 

Alternative equations are given for Fcr based on the value of the slenderness parameter, c. 

  (0.75)(67.08) 50 0.859
0.774 29,000

y

c

FKl

r E


 

   
     
   

 

The value of Q must also be determined, which is based on the b/t ratio of the angle. 

  4.0 6.40 0.446 10.7
0.625 y

b E

t F
     

  1.0Q   

The product of c and Q is then used to determine the controlling equation for Fcr. 

   0.859(1.0) 0.859 1.50c Q     

Because the product of of c and Q is less than 1.5, Fcr is computed according to the following 
equation. 

   
2 2(1.0)(0.859)0.658 (1.0) 0.658 (50) 36.71cQ

cr yF Q F


    Eq. (4-1) 

    The nominal and factored axial capacities are then as follows. 

   Pn = (4.61)(36.77) = 169.5 ksi 

   Pr = 0.90(169.5) = 152.6 ksi 

 Thus, the member is sufficient to resist the applied axial force of 54.0 kips. 

   Pu = 54.0 kips < Pr = 152.6 kips    (satisfied) 

8.4.2.2.4 Flexure: Major-Axis Bending (W-W) 

The flexural capacity of the major–axis is based on the minimum of the resistance determined 
from the local buckling and lateral torsional buckling equations, which is governed by the AISC 
SAM Section 5.3.1a. The applied moment about the major axis is computed as follows. 

   Muw = B1wMw = B1wPuew  
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1

1

1.0
1

m
w

u

e w

C
B

P
P

 



 Eq. (6-2) 

1.0mC   

(0.75)(67.08) 50 0.440
1.51 29,000cw



 
  
 

 

 
1 22

(4.61)(50) 1,190.6kips
0.441

g y

e w

cw

A F
P


    

1
1.0 1.0554.01
1,190.6

wB  



 

Muw = B1wMw = B1wPuew = (1.05)(54.0)(1.77) = 100.4 k-in 

Local Buckling: 
The following b/t ratio of the angle is used to determine the governing equation for local 
buckling capacity. 

4.0 6.40 0.54 13.00
0.625 y

b E

t F
      

Therefore, the nominal moment local buckling capacity is 277.74 k-in, which is sufficient. 

Mnw = 1.5FySc Eq. (5.1a) 

Mnw = 1.5(50)(10.48/2.83) = 277.74 k-in. 

Mnw = 277.7 k-in. > Muw = 100.4 k-in.    (satisfied) 

Lateral-Torsional Buckling: 
The following calculations determine the elastic lateral-torsional buckling capacity Mob, in 
accordance with Section 5.3.1 of the SAM. 

2 2 2 20.46 0.46(29,000)(4.0) (0.625)1.0 1,243k-in.
67.08ob b

Eb t
M C

l

   
     

   
 Eq. (5-5) 

My is then computed as follows. 

 10.4850 185.2 k-in.
2.83

w
y y w y

w

I
M F S F

c

   
      

  
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Since Mob > My, the nominal lateral torsional buckling resistance of the member about the major 
principal axis is computed from the following equation: 

1.5 1.5(185.2) 277.8k-in.yM    

1.92 1.17 1.5nw y ob y yM M M M M   
 

 Eq. (5-3b) 

     nwM 1.92 1.17 185.2 / 1,243 185.2 271.9   
 

 

nwM 271.9k-in.       

Thus, the lateral torsional buckling capacity is also sufficient to resist the applied loads. 

 Mnw = 271.9 k-in. > Muw = 100.4 k-in.  (satisfied) 

8.4.2.2.5 Flexure: Minor-Axis Bending (Z-Z): 

The nominal flexural resistance of the section about the minor axis is calculated below: 

2.761.5 1.5 1.5(50) 124.0k-in.
1.67

z
nz y y

z

I
M M F

c

   
      

  
 Eq. (5-2) 

 The applied moment about the minor axis is computed using the following 
 equation. 

Muz = B1zMz = B1zPuez 

1

1

1.0
1

m
z

u

e z

C
B

P
P

 



 

  1.0mC   

  (0.75)(67.08) 50 0.440
1.51 29,000cw



 
  
 

 

 
 

1 22

(4.61)(50) 312.4kips
0.859

g y

e z

cz

A F
P


    

 1
1.0 1.2154.01
312.4

wB  



 

 Muz = (1.21)(54.0)(0.61) = 39.9 k-in. 
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Thus, the moment capacity about the minor axis is sufficient. 

Muz = 39.9 k-in. < Mnz = 124.0 k-in.    (satisfied) 

8.4.2.2.6 Flexure and Axial Compression: 

The member is checked for the combined flexural and axial compressive forces according to 
Section 6.1.1 in the AISC SAM, which specifies that the ratio between the ultimate axial force 
and the axial capacity be used to determine the governing equation. 

54.0 0.35
152.3

u

n

P

P
   

Because Pu/Pn is greater than 0.2, the following equation must be satisfied. 

8 1.0
9

u uw uz

n b nw b nz

P M M

P M M  

 
   

 
 Eq. (6-1a) 

Using b equal to 1.00 and the other values computed above gives the following. 

54.0 8 99.4 41.8 0.98
152.3 9 (1.0)(271.9) (1.0)(124.0)

 
   

 
 (satisfied) 

Thus, the diagonal member is acceptable. 

8.5 Stiffener Design 

8.5.1 Bearing Stiffener Design 

Bearing stiffeners must be provided at locations of concentrated loads for the webs of sections 
that do not satisfy the provisions of Article D6.5. Specifically, Article D6.5 specifies the web 
strength of steel I-girders with respect to the limit states of web local yielding and web crippling. 
Both of these limit states are evaluated below for the abutment and pier locations, assuming a 10 
in. bearing length at each location. 

The requirement to prevent web local yielding is expressed by Eq. D6.5.2-1.  

Ru < bRn 

The web local yielding capacity, Rn, is given by Eq. D6.5.2-2 for interior pier reactions and by 
Eq. D6.5.2-3 for abutment reactions. 

Rn = (5k + N)Fywtw   

where: 
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k = distance from the outer face of the flange resisting the bearing force to the web 
toe of the fillet 

 
 = 1.25 + 0.3125 = 1.5625 in 

 
 N = bearing length = 10 in. 
 

Fyw = 50 ksi 
 
tw = 0.5 in. 
 

Substituting the above values into Eq. D6.5.2-2 gives the following. 

 Rn = [(5)(1.5625) + 10](50)(0.5) 

 Rn = 445 kips 

Then evaluating Eq. D6.5.2-1, where b is equal to 1.00 and Ru at the pier is equal to 337 kips, 
shows that the web yielding requirements are satisfied at the pier. 

 337 < (1.00)(445) = 445 (satisfied) 

Equation D6.5.2-3 is now used to evaluate the web yielding capacity at the abutments. 

 Rn = (2.5k + N)Fywtw      (D6.5.2-2) 

 Rn = [(2.5)(1.5625) + 10](50)(0.4375) 

 Rn = 304 kips 

Again evaluating Eq. D6.5.2-1, where Ru at the pier is equal to 258 kips, shows that the web 
yielding requirements are also satisfied at the abutments. 

 258 < (1.00)(304) = 304 (satisfied) 

The requirements to prevent web crippling are expressed by Eq. D6.5.3-1.  

 Ru < bRn  

For interior pier reactions, the web crippling capacity, Rn, is given by Eq. D6.5.3-2.  

 
1.5

20.8 1 3 yw fw
n w

f w

EF ttN
R t

d t t

             

  

where: d = depth of the steel section 
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 d = 44.375 in. 

 tf = thickness of the flange resisting the concentrated load 

 tf = 1.25 in. 

1.5
2 10 0.5 (29,000)(50)(1.25)0.8(0.5) 1 3 446kips

44.375 1.25 0.5nR
   

     
    

  

Evaluation of Eq. D6.5.3-1 where w is equal to 0.80 then shows that the pier section has 
sufficient web crippling resistance. 

337 < (0.80)(446) = 356 (satisfied) 

For abutment reactions, Rn is expressed by either Eq. D6.5.3-3 or D6.5.3-4 depending on the 
ratio between the bearing length and the steel section depth. For the present example with N/d = 
10/44 = 0.23 at the abutments, Eq. D6.5.3-4 applies. 

1.5

2 40.4 1 3 0.2 yw fw
n w

f w

EF ttN
R t

d t t

              

 Eq. (D6.5.3-4) 

1.5
2 (4)(10) 0.4375 (29,000)(50)(1.25)0.4(0.4375) 1 3 2 179kips

44 1.25 0.4375nR
   

      
    

 

Evaluating Eq. D6.5.3-1 at the abutments thus shows that bearing stiffeners must be provided to 
prevent web crippling. 

258 > (0.80)(179) = 143 (not satisfied) 

The bearing stiffeners are typically plates welded to both sides of the web that extend the full 
depth of the web, and are as close to the outer edges of the flanges as practical. The plates are to 
bear against or to be welded to the flange that the load is transmitted through. This example 
illustrates the design of bearing stiffeners at Abutment 1.  

8.5.1.1 Projecting Width (Article 6.10.11.2.2) 

The width, bt, of projecting stiffener elements must satisfy the following: 

0.48t p

ys

E
b t

F
  Eq. (6.10.11.2.2-1) 

It will be assumed that 6 inches wide plates are welded to each side of the web. Eq. 6.10.11.2.2-1 
is then rearranged to determine the minimum allowable thickness of the stiffener. 
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  
min.

6.0 0.52in.
29,0000.48 0.48 50

t
p

ys

b
t

E
F

    

Thus, a 6 inch by 5/8 inch plate will be used to evaluate the bearing stiffener requirements. 

8.5.1.2 Bearing Resistance (Article 6.10.11.2.3) 

The factored resistance for the bearing stiffeners shall be taken as: 

   sb b sbr n
R R  Eq. (6.10.11.2.3-1) 

 where: b = resistance factor for bearing =1.0 (Article 
6.5.4.2) 

 

 (Rsb)n = nominal bearing resistance for bearing 
stiffeners 

 

  = 1.4ApnFys Eq. (6.10.11.2.3-2) 

 Apn = area of the projecting elements for the 
stiffener outside of the web-to-flange 
fillet welds but not beyond the edge of the 
flange 

 

In this design example, it is assumed the clip provided at the base of the stiffener to clear the 
web-to-flange weld is 1.5 inches in length. 

 Apn = 2(6.0 - 1.5)(0.625) = 5.63 in.2 

 (Rsb)n = 1.4(5.63)(50) = 394 kips 

 (Rsb)r = (1.00)(394) = 394 kips > Ru = 257.5 kips (satisfied) 

 The 6 inch by 5/8 inch bearing stiffeners have adequate bearing resistance. 

8.5.1.3 Axial Resistance of Bearing Stiffeners (Article 6.10.11.2.4) 

The factored axial resistance is calculated from Article 6.9.2.1 of the specifications, where the 
radius of gyration is computed about the mid-thickness of the web, and the effective length is 
taken as 0.75D. For stiffeners welded to the web, part of the web is considered in the effective 
column section. The strip of web included in the effective column is not more than 9tw on each 
side of the stiffeners. Therefore, the area of the effective column section is computed below: 

 As = 2[(6.0)(0.625) + 9(0.4375)(0.4375)] = 10.95 in.2 

The moment of inertia of the effective column section is computed as follows: 
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3

40.625(6.0 0.4375 6.0) 100.2in.
12sI

 
   

The radius of gyration computed about the mid-thickness of the web is computed as: 

 100.2 3.03in.
10.95

s
s

s

I
r

A
    

The effective length is computed as follows: 

 Kl = 0.75D = 0.75(42.0) = 31.50 in. 

The bearing stiffeners must satisfy the limiting slenderness ratio, stated in Article 6.9.3, which is 
120 for main members in compression. 

 31.5 10.40 120
3.03s

Kl

r
    (satisfied) 

As previously mentioned, the factored axial resistance of the effective column section is 
calculated from Article 6.9.2.1 using the specified minimum yield strength of the stiffener. 

Pr = cPn Eq. (6.9.2.1-1) 

where: 
  

c = resistance factor for axial compression = 0.90 (Article 6.5.4.2) 
 
Pn = nominal compressive resistance from Article 6.9.4.1, which is determined based 

on the value of  
 
Determine Pn using Article 6.9.4.1.  First, determine the elastic critical buckling load, Pe, per 
Article 6.9.4.1.2 
 

 g2

s

2

e A

r
K

EP
















           Eq. (6.9.4.1.2-1) 

 

  
 

  kip 2,64610.95
10.40

29000πP 2

2

e   

 
 Po = QFyAg        Article 6.9.4.1.1 
 
where,  
 
  Po =   Equivalent nominal yield resistance 
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  Q =  Slender Element Reduction factor, taken as 1.0 for bearing stiffeners 
 
 Po = QFyAg = (1.0)(50)(10.95) = 547.5 kip 
 
 Pe / Po = 2646 / 547.5 = 4.83 > 0.44 
 
Therefore, Eq. 6.9.4.1.1-1 applies. 
 

 o
P
P

n P658.0P e

o






























          Eq. (6.9.4.1.1-1) 

 
    kip 1.0255.547658.0P 5646/5.547

e   
 

Pr = 0.90(502.1) = 451.9 kips > Ru = 257.5 kips (satisfied) 

8.5.1.4 Bearing Stiffener-to-Web Welds  

Adequate shear strength of the welds joining the bearing stiffener to the web must also be 
verified. First the weld shear strength, which is the area of the weld multiplied by 60 percent of 
the yield strength of the weld metal, is determined. 

 Rr = 0.6e2Fexx        Eq. (6.13.3.2.4b-1) 

where: 
  

e2 = resistance factor for shear in the throat of the weld metal = 0.80 
 
Fexx= classification strength of the weld metal = 70 ksi for this example 
 

 Rr = 0.6(0.80)(70)  33.6 ksi  

The minimum size fillet weld permissible in this situation is 0.25 inches, according to Table 
6.13.3.4-1. Using this weld size the shear strength per unit length of weld is as follows. 

 V = 33.6(0.707)(0.25) = 5.94 k/in. 

The length of the weld, allowing 2.5 inches for clips at both the top and bottom of the stiffener, 
is: 

 L = 42.0 – 2(2.5) = 37.0 in. 

The total factored resistance of the weld connecting the stiffener to the web of the section is then 
879 kips which is greater than the required shear strength of 257.5 kips. 

4(37.0)(5.94) = 879.1 kips > 257.5 kips (satisfied) 
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8.6 Weld Design 

This section outlines the weld design for the web-to-flange junction. The weld design strength is 
checked against the shear flow associated with the design loads. The horizontal shear flow at the 
end bearing is computed from the following equation: 

   VQ
s

I
  

  where: V = shear force 

 Q = statical moment of the area about the neutral axis 

 I = moment of inertia 

Similar to previous calculations, the shear flow will be computed by considering the cross 
sectional properties applicable to various applied forces. Thus, the statical moment of the area 
about the neutral axis will be computed for each applicable section. 

8.6.1 Steel Section: 

Top flange: Q =(10.50)(25.63) = 269.1 in.3 

Bottom flange: Q = (20.0)(17.37) = 347.4 in.3 

8.6.2 Long-term Section: 

Top flange: Q = (10.50)(12.81) =  134.5 in.3 

Slab: Q = (34.00)(18.43) =  626.6 in.3 

   = 761.1 in.3 

Bottom flange: Q = (20.0)(30.20) =  604.0 in.3 

8.6.3 Short-term Section: 

Top flange: Q = (10.5)(4.51) =     47.4 in.3 

Slab: Q = (102.0)(10.13) = 1033.3 in.3 

   = 1,081 in.3 

Bottom flange: Q = (20.0)(38.50) = 770.0 in.3 

The shear flow under each loading is thus computed as follows, where it is determined that the 
bottom flange experiences the highest level of shear flow. 
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Top Flange: 

DC1:  s = (1.25)(44)(269.1)/15,969  = 0.93 

DC2:  s = (1.25)(7)(761.1)/35,737  = 0.19 

DW:  s = (1.55)(9)(761.1)/35,737  = 0.29 

LL+IM s = (1.75)(103)(1080.7)/48,806 = 4.00 

       = 5.41 kip/in 

Bottom Flange: 

DC1:  s = (1.25)(44)(347.4)/15,969  = 1.20 

DC2:  s = (1.25)(7)(604.0)/35,737  = 0.15 

DW:  s = (1.55)(9)(604.0)/35,737  = 0.23 

LL+IM s = (1.75)(103)(770.0)/48,806  = 2.84 

       = 4.42 kip/in 

Thus, the applied shear flow of 5.41 k/in., must be evaluated in comparison to the shear flow 
capacity of both the fillet welds and the base metal. The specifications limit the minimum size of 
a fillet weld in which the base metal is thicker than 0.75" to 5/16." Therefore, a 5/16" fillet weld 
is assumed on each side of the plate. The factored resistance of the weld metal is determined as 
follows: 

Rr = 0.6e2Fexx Eq. (6.13.3.2.4b-1) 

 where: e2  = resistance factor for shear on the throat of the weld 
metal 

 

  = 0.80 (Article 
6.5.4.2) 

 Fexx = classification strength of the weld metal= 70 ksi  

 Rr = 0.6(0.80)(70) = 33.6 ksi  

The allowable shear flow for the 5/16 inch welds is: 

   v = 33.6(0.707)(0.3125)(2) = 14.85 k/in. 

From Article 6.13.5.3, the factored shear resistance of the connected material is computed as 
follows: 



 116 

Rr = v Rn Eq. (6.13.5.3-1) 

Rn = 0.58gFy Eq. (6.13.5.3-2) 

where: 
  

Rn = nominal resistance in shear 
 
Rn = 0.58(1.00)(50) = 29.0 ksi 
 
Ag = gross area of the connection element 
 
Fy = minimum yield strength of connection element 
 
Φv = resistance factor for shear = 1.00 

 

 The allowable shear flow on the connected material is: 

   v = 29.0(0.4375) = 12.69 k/in.   (governs) 

Since, v = 12.69 k/in. > vu = 5.56 k/in., the 5/16" fillet weld is adequate for the web-to-flange 
weld.  
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